Objective: Transforming growth factor β (TGFβ) plays a prominent role in the establishment of immunologic tolerance, and mice lacking TGFβ1 die of multiorgan inflammation early in life. TGFβ controls the differentiation of CD4+ lymphocytes into Treg cells or proinflammatory Th17 cells. Although this dual capacity is modulated by the presence of additional cytokines around the activated cells, TGFβ also dissociates Th17/Treg cell differentiation in a dose-dependent manner by mechanisms still unknown.
View Article and Find Full Text PDFTissue homeostasis requires tight regulation of cellular proliferation, differentiation and apoptosis. E2F1 and E2F2 transcription factors share a critical role in tissue homeostasis, since their combined inactivation results in overall organ involution, specially affecting the pancreatic gland, which subsequently triggers diabetes. We have examined the mechanism by which these E2Fs regulate tissue homeostasis.
View Article and Find Full Text PDFObjective: Despite the importance of Treg cells in the maintenance of immunologic tolerance, the mechanisms that control their generation and activity are unknown. Since the cell cycle inhibitor p27(Kip1) (p27) was involved in T cell anergy, we undertook this study to explore its role in both Treg cell processes.
Methods: The development of type II collagen-induced arthritis (CIA) and lupus-like abnormalities was compared between transgenic mice overexpressing human Bcl-2 in T cells (BCL2-TgT mice) and nontransgenic mice that were deficient or not deficient in p27.
Objective: To explore the bidirectional relationship between the development of rheumatoid arthritis (RA) and atherosclerosis using bovine type II collagen (CII)-immunized B10.RIII apoE(-/-) mice, a murine model of spontaneous atherosclerosis and collagen-induced arthritis (CIA).
Methods: Male B10.