Publications by authors named "L Bubacco"

Article Synopsis
  • The study focuses on using nanorod-associated plasmonic circular dichroism to examine α-synuclein fibrils, which are linked to Parkinson's disease.
  • It investigates how this technique can determine the 'handedness' (chirality) and composition of these fibrils from both disease models and brain samples after death.
  • The findings aim to enhance our understanding of Parkinson's disease and improve diagnostic methods by providing insights into the structural characteristics of α-synuclein fibrils.
View Article and Find Full Text PDF

P21 activated kinase 6 (PAK6) is a serine-threonine kinase with physiological expression enriched in the brain and overexpressed in a number of human tumors. While the role of PAK6 in cancer cells has been extensively investigated, the physiological function of the kinase in the context of brain cells is poorly understood. Our previous work uncovered a link between PAK6 and the Parkinson's disease (PD)-associated kinase LRRK2, with PAK6 controlling LRRK2 activity and subcellular localization via phosphorylation of 14-3-3 proteins.

View Article and Find Full Text PDF

Human full-length (fl) αSyn fibrils, key neuropathological hallmarks of Parkinson's disease (PD), generate intense optical activity corresponding to the surface plasmon resonance of interacting gold nanorods. Herein, we analysed fibril-enriched protein extracts from mouse and human brain samples as well as from SK-N-SH cell lines with or without human fl and C-terminally truncated (Ctt) αSyn overexpression and exposed them to αSyn monomers, recombinant fl αSyn fibrils or Ctt αSyn fibrils. -generated human recombinant fl and Ctt αSyn fibrils and fibrils purified from SK-N-SH cells with fl or Ctt αSyn overexpression were also analysed using transmission electron microscopy (TEM) to gain insights into the nanorod-fibril complexes.

View Article and Find Full Text PDF

Background: Gastrointestinal dysfunction has emerged as a prominent early feature of Parkinson's Disease, shedding new light on the pivotal role of the enteric nervous system in its pathophysiology. However, the role of immune-cell clusters and inflammatory and glial markers in the gut pathogenetic process needs further elucidation.

Objectives: We aimed to study duodenum tissue samples to characterize PD's enteric nervous system pathology further.

View Article and Find Full Text PDF

Alterations in the dopamine catabolic pathway are known to contribute to the degeneration of nigrostriatal neurons in Parkinson's disease (PD). The progressive cellular buildup of the highly reactive intermediate 3,4-dihydroxyphenylacetaldehye (DOPAL) generates protein cross-linking, oligomerization of the PD-linked αSynuclein (αSyn) and imbalance in protein quality control. In this scenario, the autophagic cargo sequestome-1 (SQSTM1/p62) emerges as a target of DOPAL-dependent oligomerization and accumulation in cytosolic clusters.

View Article and Find Full Text PDF