J Phys Chem C Nanomater Interfaces
November 2024
Atomic defects associated with vacancies in two-dimensional transition metal dichalcogenide monolayers efficiently trap charged carriers and strongly localize excitons. Defects in semiconducting monolayers are seldomly utilized for enhancing optical phenomena, although they may provide resonant intermediate states within the energy band gap for applications with multiphoton excitations, like highly efficient and thermally robust photon upconversion. In an MoS monolayer encapsulated by hBN with high defect and resident electron densities, we observe an upconversion of localized exciton (X) emission with a huge energy gain of up to 290 meV.
View Article and Find Full Text PDFTransition metal dichalcogenide monolayers represent unique platforms for studying both electronic and phononic interactions as well as intra- and intervalley exciton complexes. Here, we investigate the upconversion of exciton photoluminescence in MoSe monolayers. Within the nominal transparency window of MoSe the exciton emission is enhanced for resonantly addressing the spin-singlet negative trion and neutral biexciton at a few tens of meV below the neutral exciton transition.
View Article and Find Full Text PDFGermanium monosulfide with an anisotropic puckered crystalline structure has recently attracted much attention due to its unique optical and electronic properties; however, exciton-phonon interactions were only superficially elucidated. We study the resonant Raman scattering and the photoluminescence of the optically active Γ-exciton in layered GeS flakes and evaluate the exciton and phonon responses on variations in the excitation energy, laser-light and emission polarizations, temperature, and laser power. A double-resonance mechanism allows for observing Raman forbidden (dark) first- and second-order longitudinal-optical phonon modes whose symmetries and energies are moreover calculated by density functional perturbation theory.
View Article and Find Full Text PDFMonolayers of transition-metal dichalcogenides with direct band gap located at the binary [Formula: see text] points of the Brillouin zone are promising materials for applications in opto- and spin-electronics due to strongly enhanced Coulomb interactions and specific spin-valley properties. They furthermore represent a unique platform to study electron-electron and electron-phonon interactions in diverse exciton complexes. Here, we demonstrate processes in which the neutral biexciton and two negative trions, namely the spin-triplet and spin-singlet trions, upconvert light into a bright intravalley exciton in an hBN-encapsulated WS[Formula: see text] monolayer.
View Article and Find Full Text PDFSemiconducting monolayers of transition-metal dichalcogenides are outstanding platforms to study both electronic and phononic interactions as well as intra- and intervalley excitons and trions. These excitonic complexes are optically either active (bright) or inactive (dark) due to selection rules from spin or momentum conservation. Exploring ways of brightening dark excitons and trions has strongly been pursued in semiconductor physics.
View Article and Find Full Text PDF