The fluorescence intensity image of an axially integrated through-focus series of a thin standardized uniform fluorescent layer can be used for image intensity correction and calibration in sectioning microscopy. This intensity image is in fact available from the earlier introduced Sectioned Imaging Property (SIP) charts (Brakenhoff et al., 2005).
View Article and Find Full Text PDFThe human and murine genes for MRP9 (multidrug resistance-associated protein 9; ABCC12) yield many alternatively spliced RNAs. Using a panel of monoclonal antibodies, we detected full-length Mrp9 only in testicular germ cells and mouse sperm; we obtained no evidence for the existence of the truncated 100 kDa MRP9 protein reported previously. In contrast with other MRPs, neither murine Mrp9 nor the human MRP9 produced in MRP9-transfected HEK-293 cells (human embryonic kidney cells) appears to contain N-linked carbohydrates.
View Article and Find Full Text PDFThin, uniformly fluorescing reference layers can be used to characterize the imaging conditions in confocal, or more general, sectioning microscopy. Through-focus datasets of such layers obtained by standard microscope routines provide the basis for the approach. A set of parameters derived from these datasets is developed for defining a number of relevant sectioned imaging properties.
View Article and Find Full Text PDFBackground: Transforming growth factor-beta (TGF-beta) initiates intracellular signalling by inducing the formation of a heteromeric complex between TGF-beta type I (TbetaR-I) and TGF-beta type II serine/threonine kinase receptors (TbetaR-II). After the activation of TbetaR-I kinase by TbetaR-II kinase, specific receptor-regulated Smads (R-Smads) are phosphorylated by TbetaR-I kinase. Smad anchor for receptor activation (SARA), which contains a FYVE finger domain, regulates the subcellular localization of R-Smads and presents them to TbetaR-I.
View Article and Find Full Text PDFThe microstructure of two type of muscles was studied in a selection experiment conducted with Dutch Large White pigs (boars and gilts) selected for either low backfat thickness (L-line) or fast growth (F-line). Second- and fourth-generation pigs were used to determine effects of selection on fiber type composition, fiber area, and capillary density in the longissimus lumborum (LL) and biceps femoris (BF) muscles. Immediately after slaughter samples were taken from the LL and BF muscles.
View Article and Find Full Text PDF