Publications by authors named "L Breloy"

In this investigation, a multifunctional visible-light TX-based photosensitizer containing a siloxane moiety (TXS) was designed with a good overall yield of 54%. The addition of a siloxane moiety enabled the incorporation of a TX photosensitizer into a siloxane network by photoinduced sol-gel chemistry, thus avoiding its release. Both liquid H and solid-state Si NMR measurements undeniably confirmed the formation of photoacids resulting from the photolysis of the TXS/electron acceptor molecule (Iodonium salt), which promoted the photoinduced hydrolysis/condensation of the trimethoxysilane groups of TXS, with a high degree of condensation of its inorganic network.

View Article and Find Full Text PDF

Surgical site infections constitute a major health concern that may be addressed by conferring antibacterial properties to surgical tools and medical devices functional coatings. Bio-sourced polymers are particularly well-suited to prepare such coatings as they are usually safe and can exhibit intrinsic antibacterial properties or serve as hosts for bactericidal agents. The goal of this Review is to highlight the unique contribution of photochemistry as a green and mild methodology for the development of such bio-based antibacterial materials.

View Article and Find Full Text PDF

Azacalixphyrins are unique aromatic macrocycles featuring strong absorption from the visible to the near-infrared (NIR) spectral ranges. This work demonstrates through EPR spin-trapping experiments that the -alkyl tetrasubstituted azacalixphyrin (ACP) can lead to the formation of carbon-centered radicals initiating for the free-radical photopolymerization (FRP) of bio-based acrylate monomer upon the irradiation of several light emitting diodes, which emissions range from 455 to 660 nm. Compared to other previously reported systems, the tremendous advantage of the ACP photoinitiating system is its ability to promote photopolymerization on its own, avoiding the introduction of co-initiators.

View Article and Find Full Text PDF

Photochemical processes offer the possibility of preparing functional hydrogels under green conditions that are compatible with both synthetic and natural polymers. In this study, chitosan-based poly(ethylene) glycol (PEG) were successfully synthesized under light irradiation in aqueous medium. Kinetic studies under irradiation showed that less than 2 min were necessary to obtain fully cross-linked networks.

View Article and Find Full Text PDF