Spin electronic devices based on crystalline oxide layers with nanoscale thicknesses involve complex structural and magnetic phenomena, including magnetic domains and the coupling of the magnetism to elastic and plastic crystallographic distortion. The magnetism of buried nanoscale layers has a substantial impact on spincaloritronic devices incorporating garnets and other oxides exhibiting the spin Seebeck effect (SSE). Synchrotron hard x-ray nanobeam diffraction techniques combine structural, elemental, and magnetic sensitivity and allow the magnetic domain configuration and structural distortion to be probed in buried layers simultaneously.
View Article and Find Full Text PDFThis paper describes the motivation for the design and construction of a beamline at the European Synchrotron Radiation Facility (ESRF) for the use of UK material scientists. Although originally focused on the study of magnetic materials, the beamline has been running for 20 years and currently supports a very broad range of science as evidenced by the research topics highlighted in this article. We describe how the beamline will adapt to align with the ESRF's upgrade to a diffraction limited storage ring.
View Article and Find Full Text PDFWe identify and investigate thermal spin transport phenomena in sputter-deposited Pt/NiFe_{2}O_{x} (4≥x≥0) bilayers. We separate the voltage generated by the spin Seebeck effect from the anomalous Nernst effect (ANE) contributions and even disentangle the ANE in the ferromagnet (FM) from the ANE produced by the Pt that is spin polarized due to its proximity to the FM. Further, we probe the dependence of these effects on the electrical conductivity and the band gap energy of the FM film varying from nearly insulating NiFe_{2}O_{4} to metallic Ni_{33}Fe_{67}.
View Article and Find Full Text PDFCharge density wave (CDW) order appears throughout the underdoped high-temperature cuprate superconductors, but the underlying symmetry breaking and the origin of the CDW remain unclear. We use X-ray diffraction to determine the microscopic structure of the CDWs in an archetypical cuprate YBa2Cu3O6.54 at its superconducting transition temperature ∼ 60 K.
View Article and Find Full Text PDFA new materials characterization system developed at the XMaS beamline, located at the European Synchrotron Radiation Facility in France, is presented. We show that this new capability allows to measure the atomic structural evolution (crystallography) of piezoelectric materials whilst simultaneously measuring the overall strain characteristics and electrical response to dynamically (ac) applied external stimuli.
View Article and Find Full Text PDF