Background: Globally, more than 12 million people are awaiting corneal transplantation and cornea donor reduction has been observed since the outbreak of the COVID-19 pandemic, negatively influencing the availability of human corneas for research purposes as well. Therefore, the exploitation of ex vivo animal models in this field is of great value.The present study aimed at the development of a novel experimental model of porcine cornea ex vivo and lamellar tissue preparation to investigate the effects of storage conditions on corneal preservation.
View Article and Find Full Text PDFIntroduction: Recent clinical studies suggest that RPE-cell replacement therapy may preserve vision and restore retinal structure in retinal degenerative diseases. New developments enabled the differentiation of RPE cells from pluripotent stem cells. Scaffold-based methods are being tested in ongoing clinical trials for delivering these cells to the back of the eye.
View Article and Find Full Text PDFPurpose: Due to the growing shortage of human corneas for research, we developed a porcine cornea storage model with qualitative features comparable to human tissues.
Methods: We established a decontamination procedure for porcine eye bulbs to ensure corneal storage at 31°C to 35°C for up to 28 days without contamination. We compared human and porcine corneas under hypothermic (2-8°C) or culture (31-35°C) conditions for central corneal thickness (CCT), corneal transparency, endothelial morphology, endothelial cell density (ECD), and a novel method to quantify whole endothelial mortality.