Int J Biochem Cell Biol
October 2017
Mitochondrial introns in flowering plant genes are virtually all classified as members of the group II ribozyme family although certain structural features have degenerated to varying degrees over evolutionary time. We are interested in the impact that unconventional intron architecture might have on splicing biochemistry in vivo and we have focused in particular on intronic domains V and VI, which for self-splicing introns provide a key component of the catalytic core and the bulged branchpoint adenosine, respectively. Notably, the two transesterification steps in classical group II splicing are the same as for nuclear spliceosomal introns and release the intron as a lariat.
View Article and Find Full Text PDFTrans-splicing of discontinuous introns in plant mitochondria requires the assembly of independently-transcribed precursor RNAs into splicing-competent structures, and they are expected to be excised as Y-branched molecules ("broken lariats") because these introns belong to the group II ribozyme family. We now demonstrate that this is just one of several trans-splicing pathways for wheat mitochondrial nad1 intron 4 and nad5 intron 2; they also use a hydrolytic pathway and the liberated 5'-half-intron linear molecules are unexpectedly abundant in the RNA population. We also observe a third productive splicing pathway for nad5 intron 2 that yields full-length excised introns in which the termini are joined in vivo and possess non-encoded nucleotides.
View Article and Find Full Text PDFRibosomal protein genes occasionally undergo successful migration from the mitochondrion to the nucleus in flowering plants and we previously presented evidence that the S19 ribosomal protein gene (rps19) had been transferred to the nucleus in the common ancestor of Poaceae grasses. In many lineages, the mitochondrial copy was subsequently lost or pseudogenized, although in rice it was retained and the nuclear copy lost. We have now determined that functional rps19 genes are present in both the mitochondrion and nucleus in brome grass (Bromus inermis).
View Article and Find Full Text PDFMitochondrion
November 2013
To investigate the impact of cold on group II intron splicing, we compared the physical forms of excised mitochondrial introns from wheat embryos germinated at room temperature and 4°C. For introns which deviate from the conventional branchpoint structure, we observed predominantly heterogeneous circularized introns in the cold rather than linear polyadenylated forms arising from a hydrolytic pathway as seen at room temperature. In addition, intron-containing precursors are elevated relative to mature mRNAs upon cold treatment.
View Article and Find Full Text PDFFungi grow within their food, externally digesting it and absorbing nutrients across a semirigid chitinous cell wall. Members of the new phylum Cryptomycota were proposed to represent intermediate fungal forms, lacking a chitinous cell wall during feeding and known almost exclusively from ubiquitous environmental ribosomal RNA sequences that cluster at the base of the fungal tree [1, 2]. Here, we sequence the first Cryptomycotan genome (the water mold endoparasite Rozella allomycis) and unite the Cryptomycota with another group of endoparasites, the microsporidia, based on phylogenomics and shared genomic traits.
View Article and Find Full Text PDF