Schizophrenia involves neural catecholaminergic dysregulation. Tyrosine is the precursor of catecholamines, and its major transporter, according to studies on fibroblasts, in the brain is the L-type amino acid transporter 1 (LAT1). The present study assessed haplotype tag single-nucleotide polymorphisms (SNPs) of the SLC7A5/LAT1 gene in 315 patients with psychosis within the schizophrenia spectrum and 233 healthy controls to investigate genetic vulnerability to the disorder as well as genetic relationships to homovanillic acid (HVA) and 3-methoxy-4-hydroxyphenylglycol (MHPG), the major catecholamine metabolites in the cerebrospinal fluid (CSF).
View Article and Find Full Text PDFBackground: The catecholaminergic and serotonergic neurotransmitter systems are implicated in the pathophysiology of attention-deficit/hyperactivity disorder (ADHD). The amino acid tyrosine is the precursor for synthesis of the catecholamines dopamine and norepinephrine, while tryptophan is the precursor of serotonin. A disturbed transport of tyrosine, as well as other amino acids, has been found in a number of other psychiatric disorders, such as schizophrenia, bipolar disorder and autism, when using the fibroblast cell model.
View Article and Find Full Text PDFAberrant tyrosine transport is a repeated finding in fibroblasts from schizophrenic patients. The transport aberration could lead to disturbances in the dopaminergic and noradrenergic neurotransmitter systems. Tyrosine and tryptophan are the precursors of the neurotransmitters dopamine and serotonin.
View Article and Find Full Text PDFHuman fibroblast cells are an advantageous model to study the transport of amino acids across cell membranes, since one can control the environmental factors. A major problem in all earlier studies is the lack of precise and detailed knowledge regarding the expression and functionality of tyrosine transporters in human fibroblasts. This motivated us to perform a systematic functional characterization of the tyrosine transport in fibroblast cells with respect to the isoforms of system-L (LAT1, LAT2, LAT3, LAT4), which is the major transporter of tyrosine.
View Article and Find Full Text PDF