Publications by authors named "L Birnby"

We used a two-compartment coculture model comprising human endothelial cells (EC) and non-small cell lung carcinoma (CA) cells to study capillary formation. Elevated NO concentrations, contributed in part by CA cells, lead to inhibited capillary formation (Phillips PG, Birnby LM, Narendran A, and Milonovich WL. Am J Physiol Lung Cell Mol Physiol 281: L278-L290, 2001).

View Article and Find Full Text PDF

Nitric oxide synthase expression has been documented in lung tumors, but a potential role for nitric oxide (NO) in induction of capillary formation remains to be elucidated. The purpose of this report was to characterize the direct effects of NO at the level of the tumor-endothelium interface with respect to angiogenesis. A Transwell two-compartment culture system, human endothelial cells (EC), and two human non-small cell lung cancer (CA) lines that constitutively produce NO were used to simulate the EC-tumor cell interface.

View Article and Find Full Text PDF

The development of new vessels (angiogenesis) is essential to wound healing. The center of a wound space is hypoxic, a condition that has been shown to stimulate angiogenesis in animal models of coronary artery occlusion. Because the mechanisms involved in this complex process are difficult to study in situ, an in vitro model would provide a useful complement to in vivo studies.

View Article and Find Full Text PDF

Confluent calf pulmonary artery endothelial monolayers exposed to 95% oxygen for 1, 2, or 3 days exhibit a time-dependent increase in adherence to substratum, which closely parallels changes in actin cytoarchitecture and the distribution of focal contact proteins vinculin and talin. Oxygen exposure also resulted in elevated plasminogen activator (PA) activity in conditioned media (CM) and in cytoskeletal protein- and focal contact protein-enriched fractions, with highest levels achieved in the latter two fractions at 48 h after oxygen exposure. PAs have been shown to participate in dismantling of extracellular matrix in a number of physiological and pathological situations.

View Article and Find Full Text PDF