Background: Adoption and evaluation of contact tracing tools based on information and communications technology may expand the reach and efficacy of traditional contact tracing methods in fighting COVID-19. The Dutch Ministry of Health, Welfare and Sports initiated and developed CoronaMelder, a COVID-19 contact tracing app. This app is based on a Google/Apple Exposure Notification approach and aims to combat the spread of the coronavirus among individuals by notifying those who are at increased risk of infection due to proximity to someone who later tests positive for COVID-19.
View Article and Find Full Text PDFMaturity-onset diabetes of the young 3 (MODY3) is a type of NIDDM caused by mutations in the transcription factor hepatocyte nuclear factor-1alpha (HNF-1alpha) located on chromosome 12q. We have identified four novel HNF-1alpha missense mutations in MODY3 families. In four additional and unrelated families, we observed an identical insertion mutation that had occurred in a polycytidine tract in exon 4.
View Article and Find Full Text PDFThe melanocortin-4 receptor (MC4-R) is a G protein-coupled, seven-transmembrane receptor expressed in the brain. Inactivation of this receptor by gene targeting results in mice that develop a maturity onset obesity syndrome associated with hyperphagia, hyperinsulinemia, and hyperglycemia. This syndrome recapitulates several of the characteristic features of the agouti obesity syndrome, which results from ectopic expression of agouti protein, a pigmentation factor normally expressed in the skin.
View Article and Find Full Text PDFThe mutated gene responsible for the tubby obesity phenotype has been identified by positional cloning. A single base change within a splice donor site results in the incorrect retention of a single intron in the mature tub mRNA transcript. The consequence of this mutation is the substitution of the carboxy-terminal 44 amino acids with 24 intron-encoded amino acids.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 1994
The survival of developing motor neurons depends on factors secreted from skeletal muscles and from cells within the central nervous system. Although several members of the nerve growth factor protein family [neurotrophins (NTs)] are able to maintain developing rat motor neurons in vitro, only the brain-derived neurotrophic factor has been shown to have significant effects on the survival of motor neurons in vivo. In the present study, we demonstrate that NT-4/5 also prevents injury-induced death of facial motor neurons in neonatal rats.
View Article and Find Full Text PDF