Publications by authors named "L Benedetti-Cecchi"

Theory predicts that spatial modular networks contain the propagation of local disturbances, but field experimental tests of this hypothesis are lacking. We combined a field experiment with a metacommunity model to assess the role of modularity in buffering the spatial spread of algal turfs in three replicated canopy-dominated macroalgal networks. Experimental networks included three modules where plots with intact canopy cover (nodes) were connected through canopy-thinned corridors.

View Article and Find Full Text PDF

Marine bioconstructions and their ecological functions are increasingly threatened by compounded natural disturbances and direct and indirect impacts of anthropogenic activities. Through a manipulative experiment in the field, we assessed the response of intertidal biogenic patches built by the honeycomb worm, Sabellaria alveolata, to combined disturbances. Repeated battering events, simulating those associated with waves, were applied on intact or previously damaged bioconstructions, mimicking those impacted by harvesting of infaunal organisms.

View Article and Find Full Text PDF

Although many studies predict extensive future biodiversity loss and redistribution in the terrestrial realm, future changes in marine biodiversity remain relatively unexplored. In this work, we model global shifts in one of the most important marine functional groups-ecosystem-structuring macrophytes-and predict substantial end-of-century change. By modelling the future distribution of 207 brown macroalgae and seagrass species at high temporal and spatial resolution under different climate-change projections, we estimate that by 2100, local macrophyte diversity will decline by 3-4% on average, with 17 to 22% of localities losing at least 10% of their macrophyte species.

View Article and Find Full Text PDF

Determining the proximity of ecosystems to tipping points is a critical yet complex task, heightened by the growing severity of climate change and local anthropogenic stressors on ecosystem integrity. Spatial Early Warning Signals (EWS) have been recognized for their potential in preemptively signaling regime shifts to degraded states, but their performance in natural systems remains uncertain. In this study, we investigated the performance of 'recovery length' - the spatial extent of recovery from a perturbation - and spatial EWS as early warnings of regime shifts in Posidonia oceanica meadows.

View Article and Find Full Text PDF

Ocean warming and acidification, decreases in dissolved oxygen concentrations, and changes in primary production are causing an unprecedented global redistribution of marine life. The identification of underlying ecological processes underpinning marine species turnover, particularly the prevalence of increases of warm-water species or declines of cold-water species, has been recently debated in the context of ocean warming. Here, we track changes in the mean thermal affinity of marine communities across European seas by calculating the Community Temperature Index for 65 biodiversity time series collected over four decades and containing 1,817 species from different communities (zooplankton, coastal benthos, pelagic and demersal invertebrates and fish).

View Article and Find Full Text PDF