Publications by authors named "L Benameur"

The extended life expectancy and the raise of accidental trauma call for an increase of osteoarticular surgical procedures. Arthroplasty, the main clinical option to treat osteoarticular lesions, has limitations and drawbacks. In this manuscript, we test the preclinical safety of the innovative implant ARTiCAR for the treatment of osteoarticular lesions.

View Article and Find Full Text PDF

As a cell carrier, cross-linking is one of the most common approaches used to provide chitosan with greater structural integrity. We introduced a cross-linking strategy by using two purines, guanosine 5'-diphosphate (GDP) or adenosine 5'-diphosphate (ADP), as cross-linkers. The rationale for this approach is that both GDP and ADP have an important physiological role and act as intercellular signaling molecules in numerous biological processes.

View Article and Find Full Text PDF

Unlabelled: An injectable, guanosine 5'-diphosphate (GDP)-crosslinked chitosan sponge was investigated as a drug delivery system (DDS) for accelerating biomineralization in critical size bone defects (CSBDs). Two approaches were examined both individually, and in combination, in order to achieve this goal. The first approach involved the encapsulation and release of Bone Morphogenetic Protein 7 (BMP-7), a powerful mineralization stimulant.

View Article and Find Full Text PDF

Under physiological conditions, there is a production of limited range of free radicals. However, when the cellular antioxidant defence systems, overwhelm and fail to reverse back the free radicals to their normal basal levels, there is a creation of a condition of redox disequilibrium termed "oxidative stress", which is implicated in a very wide spectrum of genetic, metabolic, and cellular responses. The excess of free radicals can, cause unfavourable molecular alterations to biomolecules through oxidation of lipids, proteins, RNA and DNA, that can in turn lead to mutagenesis, carcinogenesis, and aging.

View Article and Find Full Text PDF

The broad range of applications of cerium oxide (CeO2) nanoparticles (nano-CeO2) has attracted industrial interest, resulting in greater exposures to humans and environmental systems in the coming years. Their health effects and potential biological impacts need to be determined for risk assessment. The aims of this study were to gain insights into the molecular mechanisms underlying the genotoxic effects of nano-CeO2 in relation with their physicochemical properties.

View Article and Find Full Text PDF