Publications by authors named "L Bellarosa"

Multinuclear solid-state nuclear magnetic resonance, mass spectrometry, first-principles molecular dynamics simulations, and other complementary evidence reveal that the coordination environment around the Zn(2+) ions in MOF-5, one of the most iconic materials among metal-organic frameworks (MOFs), is not rigid. The Zn(2+) ions bind solvent molecules, thereby increasing their coordination number, and dynamically dissociate from the framework itself. On average, one ion in each cluster has at least one coordinated N,N-dimethylformamide (DMF) molecule, such that the formula of as-synthesized MOF-5 is defined as Zn4O(BDC)3(DMF) x (x = 1-2).

View Article and Find Full Text PDF

The structure and properties of water films in contact with metal surfaces are crucial to understand the chemical and electrochemical processes involved in energy-related technologies. The nature of thin water films on Pd, Pt, and Ru has been investigated by first-principles molecular dynamics to assess how the chemistry at the water-metal surface is responsible for the diversity in the behavior of the water layers closer to the metal. The characteristics of liquid water: the radial distribution functions, coordination, and fragment speciation appear only for unconfined water layers of a minimum of 1.

View Article and Find Full Text PDF

We investigated which factors govern the critical steps of cation exchange in metal-organic frameworks by studying the effect of various solvents on the insertion of Ni(2+) into MOF-5 and Co(2+) into MFU-4l. After plotting the extent of cation insertion versus different solvent parameters, trends emerge that offer insight into the exchange processes for both systems. This approach establishes a method for understanding critical aspects of cation exchange in different MOFs and other materials.

View Article and Find Full Text PDF

Metal-Organic Frameworks are considered to be the next generation of sorbents both because of their synthetic versatility and high selectivity potential. In the first generation (IRMOF), the main drawback for commercial implementation is the lack of hydrothermal stability. Even if several studies have been conducted to elucidate the reasons behind their structural weakness in humid environments, how apparently small changes in the stoichiometry of the building units affect the stability of the lattice is still poorly understood.

View Article and Find Full Text PDF

Increasing the resistance to humid environments is mandatory for the implementation of isoreticular metal-organic frameworks (IRMOFs) in industry. To date, the causes behind the sensitivity of [Zn(4)(μ(4)-O)(μ-bdc)(3)](8)(IRMOF-1; bdc=1,4-benzenedicarboxylate) to water remain still open. A multiscale scheme that combines Monte Carlo simulations, density functional theory and first-principles Born-Oppenheimer molecular dynamics on IRMOF-1 was employed to unravel the underlying atomistic mechanism responsible for lattice disruption.

View Article and Find Full Text PDF