The presence and distribution of preserved organic matter on the surface of Mars can provide key information about the Martian carbon cycle and the potential of the planet to host life throughout its history. Several types of organic molecules have been previously detected in Martian meteorites and at Gale crater, Mars. Evaluating the diversity and detectability of organic matter elsewhere on Mars is important for understanding the extent and diversity of Martian surface processes and the potential availability of carbon sources.
View Article and Find Full Text PDFThe Perseverance rover landed in Jezero crater, Mars, in February 2021. We used the Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) instrument to perform deep-ultraviolet Raman and fluorescence spectroscopy of three rocks within the crater. We identify evidence for two distinct ancient aqueous environments at different times.
View Article and Find Full Text PDFWe report deep ultraviolet (DUV) Raman and Fluorescence spectra obtained on a SHERLOC (Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals) analog instrument for 51 pure organic compounds, including 5 carboxylic acids, 10 polycyclic aromatic hydrocarbons, 24 amino acids, 6 nucleobases, and 6 different grades of macromolecular carbon from humic acid to graphite. Organic mixtures were not investigated. We discuss how the DUV fluorescence and Raman spectra exhibited by different organic compounds allow for detection, classification, and identification of organics by SHERLOC.
View Article and Find Full Text PDFThe geological units on the floor of Jezero crater, Mars, are part of a wider regional stratigraphy of olivine-rich rocks, which extends well beyond the crater. We investigated the petrology of olivine and carbonate-bearing rocks of the Séítah formation in the floor of Jezero. Using multispectral images and x-ray fluorescence data, acquired by the Perseverance rover, we performed a petrographic analysis of the Bastide and Brac outcrops within this unit.
View Article and Find Full Text PDFThe Perseverance rover landed in Jezero crater, Mars, to investigate ancient lake and river deposits. We report observations of the crater floor, below the crater's sedimentary delta, finding that the floor consists of igneous rocks altered by water. The lowest exposed unit, informally named Séítah, is a coarsely crystalline olivine-rich rock, which accumulated at the base of a magma body.
View Article and Find Full Text PDF