Publications by authors named "L Beazley"

The biological utilization of dissolved silicon (DSi) influences ocean ecology and biogeochemistry. In the deep sea, hexactinellid sponges are major DSi consumers that remain poorly understood. Their DSi consumption departs from the Michaelis-Menten kinetics of shallow-water demosponges and appears particularly maladapted to incorporating DSi from the modest concentrations typical of the modern ocean.

View Article and Find Full Text PDF

Few studies have explored the microbiomes of glass sponges (Hexactinellida). The present study seeks to elucidate the composition of the microbiota associated with the glass sponge and the functional strategies of the main symbionts. We combined microscopic approaches with metagenome-guided microbial genome reconstruction and amplicon community profiling toward this goal.

View Article and Find Full Text PDF

The deep sea plays a critical role in global climate regulation through uptake and storage of heat and carbon dioxide. However, this regulating service causes warming, acidification and deoxygenation of deep waters, leading to decreased food availability at the seafloor. These changes and their projections are likely to affect productivity, biodiversity and distributions of deep-sea fauna, thereby compromising key ecosystem services.

View Article and Find Full Text PDF

Emerald Basin on the Scotian Shelf off Nova Scotia, Canada, is home to a globally unique aggregation of the glass sponge Vazella pourtalesi, first documented in the region in 1889. In 2009, Fisheries and Oceans Canada (DFO) implemented two Sponge Conservation Areas to protect these sponge grounds from bottom fishing activities. Together, the two conservation areas encompass 259 km2.

View Article and Find Full Text PDF

The United Nations General Assembly Resolution 61/105, concerning sustainable fisheries in the marine ecosystem, calls for the protection of vulnerable marine ecosystems (VME) from destructive fishing practices. Subsequently, the Food and Agriculture Organization (FAO) produced guidelines for identification of VME indicator species/taxa to assist in the implementation of the resolution, but recommended the development of case-specific operational definitions for their application. We applied kernel density estimation (KDE) to research vessel trawl survey data from inside the fishing footprint of the Northwest Atlantic Fisheries Organization (NAFO) Regulatory Area in the high seas of the northwest Atlantic to create biomass density surfaces for four VME indicator taxa: large-sized sponges, sea pens, small and large gorgonian corals.

View Article and Find Full Text PDF