Publications by authors named "L Battle"

Dashboards remain ubiquitous tools for analyzing data and disseminating the findings. Understanding the range of dashboard designs, from simple to complex, can support development of authoring tools that enable end-users to meet their analysis and communication goals. Yet, there has been little work that provides a quantifiable, systematic, and descriptive overview of dashboard design patterns.

View Article and Find Full Text PDF

Trained on vast corpora, Large Language Models (LLMs) have the potential to encode visualization design knowledge and best practices. However, if they fail to do so, they might provide unreliable visualization recommendations. What visualization design preferences, then, have LLMs learned? We contribute DracoGPT, a method for extracting, modeling, and assessing visualization design preferences from LLMs.

View Article and Find Full Text PDF

Visualization designers (e.g., journalists or data analysts) often rely on examples to explore the space of possible designs, yet we have little insight into how examples shape data visualization design outcomes.

View Article and Find Full Text PDF

Researchers have derived many theoretical models for specifying users' insights as they interact with a visualization system. These representations are essential for understanding the insight discovery process, such as when inferring user interaction patterns that lead to insight or assessing the rigor of reported insights. However, theoretical models can be difficult to apply to existing tools and user studies, often due to discrepancies in how insight and its constituent parts are defined.

View Article and Find Full Text PDF

Findings from graphical perception can guide visualization recommendation algorithms in identifying effective visualization designs. However, existing algorithms use knowledge from, at best, a few studies, limiting our understanding of how complementary (or contradictory) graphical perception results influence generated recommendations. In this paper, we present a pipeline of applying a large body of graphical perception results to develop new visualization recommendation algorithms and conduct an exploratory study to investigate how results from graphical perception can alter the behavior of downstream algorithms.

View Article and Find Full Text PDF