We present a 3-dimensional fully natural sonic crystal composed of spherical aggregates of fibers (called Aegagropilae) resulting from the decomposition of Posidonia Oceanica. The fiber network is first acoustically characterized, providing insights on this natural fiber entanglement due to turbulent flow. The Aegagropilae are then arranged on a principal cubic lattice.
View Article and Find Full Text PDFAn ultrasonic method is proposed to characterize the morphological (geometrical) aspects of powders through the elastic modulus dependence of their packing on the factors of polydispersity, coordination number and particle shape. During the mechanical alloying process, the variation in geometrical characteristics of powders provides critical information. Ultrasonic parameters are shown to be sensitive not only to the average contact number per bead (i.
View Article and Find Full Text PDF