We develop a method to use the mixed third and second harmonic electron cyclotron emission (ECE) signal in the DIII-D tokamak to reconstruct the electron temperature profile of a rotating magnetic island. The third harmonic ECE is removed by extracting the rotating-island-associated fluctuations in the mixed signal, and the extracted fluctuation is combined with the equilibrium temperature obtained from other diagnostics after correcting for the third harmonic reabsorption. The accuracy of the reconstruction is studied by considering a DIII-D shot where an unmixed signal from an island is available on the low field side of the plasma and a mixed signal from the same island is available from the high field side.
View Article and Find Full Text PDFThe perturbed ion temperature and toroidal flow were measured in rotating neoclassical tearing modes (NTM) in a tokamak for the first time. These toroidally and radially resolved profiles were obtained by impurity ion spectroscopy in a 2,1 NTM in DIII-D. In agreement with drift-kinetic simulations, the electron temperature profile is flat, while the ion temperature gradient is restored across the magnetic island O point in the presence of fast ions; the perturbed flow has minima in the O points and maxima at the X points.
View Article and Find Full Text PDFWe report the experimental observation of seed magnetic island formation by nonlinear three-wave coupling of magnetic island triplets. In this experiment, disruptive 2,1 islands are seeded by the coupling of 4,3 and 3,2 tearing modes to a central 1,1 sawtooth precursor. Three-wave interactions between these modes are conclusively identified by bispectral analysis, indicating fixed phase relationships in agreement with theory.
View Article and Find Full Text PDFPhys Rev Lett
February 2021
We report empirical observations of magnetic island heteroclinic bifurcation for the first time. This behavior is observed in interacting coupled 2/1 tearing modes in the core of a DIII-D tokamak plasma. Poincaré maps constrained by measured magnetic amplitudes and phasing show bifurcation from heteroclinic to homoclinic topology in the 2/1 island as the 4/2 relative amplitude (R_{4/2}) decreases.
View Article and Find Full Text PDFMagnetic islands (MIs), resulting from a magnetic field reconnection, are ubiquitous structures in magnetized plasmas. In tokamak plasmas, recent researches suggested that the interaction between an MI and ambient turbulence can be important for the nonlinear MI evolution, but a lack of detailed experimental observations and analyses has prevented further understanding. Here, we provide comprehensive observations such as turbulence spreading into an MI and turbulence enhancement at the reconnection site, elucidating intricate effects of plasma turbulence on the nonlinear MI evolution.
View Article and Find Full Text PDF