Label-free electrochemical biosensors have many desirable characteristics in terms of miniaturization, scalability, digitization, and other attributes associated with point-of-care (POC) applications. In the era of COVID-19 and pandemic preparedness, further development of such biosensors will be immensely beneficial for rapid testing and disease management. Label-free electrochemical biosensors often employ [Fe(CN)] redox probes to detect low-concentration target analytes as they dramatically enhance sensitivity.
View Article and Find Full Text PDFCoronavirus disease 2019 (COVID-19) has caused significant global morbidity and mortality. The serology test that detects antibodies against the disease causative agent, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has often neglected value in supporting immunization policies and therapeutic decision-making. The ELISA-based antibody test is time-consuming and bulky.
View Article and Find Full Text PDFA novel test strategy is proposed with dual-modality detection techniques for COVID-19 antibody detection. The full-length S protein of SARS-CoV-2 was chemically immobilized on a glass surface to capture anti-SARS-CoV-2 IgG in patient serum and was detected through either Electrochemical Impedance Spectroscopy (EIS) or fluorescence imaging with labeled secondary antibodies. Gold nanoparticles conjugated with protein G were used as the probe and the bound GNP-G was detected through EIS measurements.
View Article and Find Full Text PDFBackground: Children play an important role in the transmission of influenza. The best choice of vaccine to achieve both direct and indirect protection is uncertain. The objective of the study was to test whether vaccinating children with MF59 adjuvanted trivalent influenza vaccine (aTIV) can reduce influenza in children and their extended households compared to inactivated quadrivalent vaccine (QIV).
View Article and Find Full Text PDF