NMD670 is a first-in-class inhibitor of skeletal muscle-specific chloride channel ClC-1, developed to improve muscle weakness and fatigue in neuromuscular diseases. Preclinical studies show that ClC-1 inhibition enhances muscle excitability, improving muscle contractility and strength. We describe the first-in-human, randomized, double-blind, placebo-controlled study, which evaluated the safety, pharmacokinetics, and pharmacodynamics of single and multiple doses of NMD670 in healthy male and female subjects.
View Article and Find Full Text PDFBackground And Objective: Voriconazole (VRC), a broad-spectrum antifungal drug, exhibits nonlinear pharmacokinetics (PK) due to saturable metabolic processes, autoinhibition and metabolite-mediated inhibition on their own formation. VRC PK is also characterised by high inter- and intraindividual variability, primarily associated with cytochrome P450 (CYP) 2C19 genetic polymorphism. Additionally, recent in vitro findings indicate that VRC main metabolites, voriconazole N-oxide (NO) and hydroxyvoriconazole (OHVRC), inhibit CYP enzymes responsible for VRC metabolism, adding to its PK variability.
View Article and Find Full Text PDFCongenital adrenal hyperplasia (CAH) is characterized by impaired adrenal cortisol production. Hydrocortisone (synthetic cortisol) is the drug-of-choice for cortisol replacement therapy, aiming to mimic physiological cortisol circadian rhythm. The hypothalamic-pituitary-adrenal (HPA) axis controls cortisol production through the pituitary adrenocorticotropic hormone (ACTH) and feedback mechanisms.
View Article and Find Full Text PDFIn preclinical investigations, for example, in in vitro, in vivo, and in silico studies, the pharmacokinetic, pharmacodynamic, and toxicological characteristics of a drug are evaluated before advancing to first-in-man trial. Usually, each study is analyzed independently and the human dose range does not leverage the knowledge gained from all studies. Taking into account all preclinical data through inferential procedures can be particularly interesting in obtaining a more precise and reliable starting dose and dose range.
View Article and Find Full Text PDFThe use of β-lactam (BL) and β-lactamase inhibitor (BLI) combinations, such as piperacillin-tazobactam (PIP-TAZ) is an effective strategy to combat infections by extended-spectrum β-lactamase-producing bacteria. However, in Gram-negative bacteria, resistance (both mutational and adaptive) to BL-BLI combination can still develop through multiple mechanisms. These mechanisms may include increased β-lactamase activity, reduced drug influx, and increased drug efflux.
View Article and Find Full Text PDF