Phys Chem Chem Phys
January 2025
This study explores the optoelectronic and photovoltaic potential of acceptor-π-donor (A-π-D) architectures utilizing CSi quantum dots (CSiQDs) through a combination of density functional theory (DFT) and time-dependent DFT (TDDFT). We examined two key structural configurations: C-C and Si-C conformers. In these systems, CSiQDs serve as the acceptor, CHSF as the π-bridge, and 3 × (CHO) as the donor.
View Article and Find Full Text PDFIn this study we aim to manipulate the optoelectronic and photoluminescence properties of diamond-shaped graphene quantum dots (DSGQDs) in order to make them suitable for solar cells and photovoltaic devices. Using DFT and performing many-body effects studies, we investigate the impact of N, B, O, P and S heteroatom doping on DSGQDs in three different positions, namely the zigzag edge, the armchair corner and the surface, in order to identify the most appropriate and promising configurations. All the doped GQDs are found to be chemically stable making it possible to realize them experimentally.
View Article and Find Full Text PDFThe heat conduction performance of materials has a crucial role in deciding their functional efficiency. For this purpose, the present study explores the structural and thermal properties of multilayer silicon carbide nanoribbons (SiCNRs). At first, we realize that the smallest values of cohesive energy correspond to the system with the largest interlayer distance due to vdW forces.
View Article and Find Full Text PDFThe structural properties and thermal conductivity of graphene-based SiC heterostructures are investigated using the reverse nonequilibrium molecular dynamics. The C/SiC/C heterostructure has the greatest value of cohesive energy due to the effect of vdW interactions between layers. The surfaces of heterostructures begin to ripple as a direct consequence of the plane fluctuations observed around T = 400 K.
View Article and Find Full Text PDFThe mechanical properties of pristine and defective Si-based hybrid sheets are studied using molecular dynamics calculations for a temperature ranging from 100 to 800 K, in conjunction with a variable strain rate. When increasing temperature, the melting phase of the hybrids occurs from the solid to the liquid phase, while the increase in the strain rate enhances their elastic parameters. The absence of plastic stage reveals that the fracture pattern is brittle in these 2D materials.
View Article and Find Full Text PDF