High-fat diets alter gut barrier integrity, leading to endotoxemia by impacting epithelial functions and inducing endoplasmic reticulum (ER) stress in intestinal secretory goblet cells. Indeed, ER stress, which is an important contributor to many chronic diseases such as obesity and obesity-related disorders, leads to altered synthesis and secretion of mucins that form the protective mucus barrier. In the present study, we investigated the relative contribution of omega-3 polyunsaturated fatty acid (PUFAs)-modified microbiota to alleviating alterations in intestinal mucus layer thickness and preserving gut barrier integrity.
View Article and Find Full Text PDFWe previously provided evidence for the contribution of pyoverdine to the iron nutrition of Arabidopsis. In the present article, we further analyze the mechanisms and physiology of the adaptations underlying plant iron nutrition through Fe(III)-pyoverdine (Fe(III)-pvd). An integrated approach combining microscopy and nanoscale secondary ion mass spectrometry (NanoSIMS) on plant samples was adopted to localize pyoverdine in planta and assess the impact of this siderophore on the plant iron status and root cellular morphology.
View Article and Find Full Text PDF7-Ketocholesterol and 7β-hydroxycholesterol are most often derived from the autoxidation of cholesterol. Their quantities are often increased in the body fluids and/or diseased organs of patients with age-related diseases such as cardiovascular diseases, Alzheimer's disease, age-related macular degeneration, and sarcopenia which are frequently associated with a rupture of RedOx homeostasis leading to a high oxidative stress contributing to cell and tissue damages. On murine cells from the central nervous system (158N oligodendrocytes, microglial BV-2 cells, and neuronal N2a cells) as well as on C2C12 murine myoblasts, these two oxysterols can induce a mode of cell death which is associated with qualitative, quantitative, and functional modifications of the peroxisome.
View Article and Find Full Text PDFBr J Cancer
January 2024
Background: Circulating tumour cells (CTCs), circulating tumour DNA (ctDNA), and extracellular vesicles (EVs) are minimally invasive liquid biopsy biomarkers. This study investigated whether they predict prognosis, alone or in combination, in heterogenous unbiased non-small cell lung cancer (NSCLC) patients.
Methods: Plasma samples of 54 advanced NSCLC patients from a prospective clinical trial.