Publications by authors named "L Andries"

Article Synopsis
  • DiGeorge syndrome (DGS) is a genetic disorder caused by microdeletions in the 22q11.2 region, leading to a range of developmental abnormalities, with a prevalence of about 1 in 4000 births.
  • A new multiplex droplet digital PCR (ddPCR) assay was developed to accurately detect and map these microdeletions by amplifying specific targets and including an internal control.
  • The assay proved effective in clinical samples, identifying microdeletions and correlating changes in immune cell counts, indicating its potential for reliable DGS diagnosis using blood samples.
View Article and Find Full Text PDF
Article Synopsis
  • The SMACC checklist was created to guide the development and evaluation of self-management support programs for people with chronic conditions and was validated through an international Delphi study.
  • The study involved two rounds of feedback from 54 professionals in self-management, focusing on clarity, relevance, and alignment with the checklist's goals, achieving a consensus on the majority of items.
  • Ultimately, the SMACC checklist was affirmed as a valid resource that can effectively enhance existing frameworks for self-management support in research and clinical settings.
View Article and Find Full Text PDF

The multifaceted nature of neuroinflammation is highlighted by its ability to both aggravate and promote neuronal health. While in mammals retinal ganglion cells (RGCs) are unable to regenerate following injury, acute inflammation can induce axonal regrowth. However, the nature of the cells, cellular states and signalling pathways that drive this inflammation-induced regeneration have remained elusive.

View Article and Find Full Text PDF

Neuroinflammation has been put forward as a mechanism triggering axonal regrowth in the mammalian central nervous system (CNS), yet little is known about the underlying cellular and molecular players connecting these two processes. In this study, we provide evidence that MMP2 is an essential factor linking inflammation to axonal regeneration by using an in vivo mouse model of inflammation-induced axonal regeneration in the optic nerve. We show that infiltrating myeloid cells abundantly express MMP2 and that MMP2 deficiency results in reduced long-distance axonal regeneration.

View Article and Find Full Text PDF

Neurodegenerative disorders, characterized by progressive neuronal loss, eventually lead to functional impairment in the adult mammalian central nervous system (CNS). Importantly, these deteriorations are irreversible, due to the very limited regenerative potential of these CNS neurons. Stimulating and redirecting neuroinflammation was recently put forward as an important approach to induce axonal regeneration, but it remains elusive how inflammatory processes and CNS repair are intertwined.

View Article and Find Full Text PDF