Phthalate esters (PAEs) are broadly utilized as plasticizers in industrial products, posing a significant threat to ecological security and human health. Lipase is a kind of green biocatalyst with the ability to degrade PAEs, but its application is limited due to its low stability and poor reusability. Herein, lipase from Candida rugosa (CRL) was immobilized into an organic ligand replacement MOFs (MAF-507) and cysteine modification and glutaraldehyde cross-linking were simultaneously performed to synthesize immobilized lipase (Cys-CRL@GA@MAF-507) using a one-pot method.
View Article and Find Full Text PDFSci Data
December 2024
Knowledge about seafloor depth, or bathymetry, is crucial for various marine activities, including scientific research, offshore industry, safety of navigation, and ocean exploration. Mapping the central Arctic Ocean is challenging due to the presence of perennial sea ice, which limits data collection to icebreakers, submarines, and drifting ice stations. The International Bathymetric Chart of the Arctic Ocean (IBCAO) was initiated in 1997 with the goal of updating the Arctic Ocean bathymetric portrayal.
View Article and Find Full Text PDFSequencing-based microbial count data analysis is a challenging task due to the presence of numerous non-biological zeros, which can impede downstream analysis. To tackle this issue, we introduce two novel approaches, PhyImpute and UniFracImpute, which leverage similar microbial samples to identify and impute non-biological zeros in microbial count data. Our proposed methods utilize the probability of non-biological zeros and phylogenetic trees to estimate sample-to-sample similarity, thus addressing this challenge.
View Article and Find Full Text PDFThe composite pollution is an increasingly severe challenge in the field of water treatment. Especially, microplastics (MPs) contamination and Microcystis aeruginosa (M. aeruginosa) were verified that they could synergistically pose a serious threat to safety of drinking water.
View Article and Find Full Text PDFBackground: As one of the most promising adoptive cell therapies, CAR-T cell therapy has achieved notable clinical effects in patients with hematological tumors. However, several treatment-related obstacles remain in CAR-T therapy, such as cytokine release syndrome, neurotoxicity, and high-frequency recurrence, which severely limit the long-term effects and can potentially be fatal. Therefore, strategies to increase the controllability and safety of CAR-T therapy are urgently needed.
View Article and Find Full Text PDF