Publications by authors named "L Almaraz"

Morphological and functional alterations of peripheral somatosensory neurons during the aging process lead to a decline of somatosensory perception. Here, we analyze the changes occurring with aging in trigeminal ganglion (TG), TRPM8-expressing cold thermoreceptor neurons innervating the mouse cornea, which participate in the regulation of basal tearing and blinking and have been implicated in the pathogenesis of dry eye disease (DED). TG cell bodies and axonal branches were examined in a mouse line (TRPM8 -EYFP) expressing a fluorescent reporter.

View Article and Find Full Text PDF

Transient receptor potential melastatin 8 (TRPM8) was originally cloned from prostate tissue. Shortly thereafter, the protein was identified as a cold- and menthol-activated ion channel in peripheral sensory neurons, where it plays a critical role in cold temperature detection. In this chapter, we review our current understanding of the molecular and biophysical properties, the pharmacology, and the modulation by signaling molecules of this TRP channel.

View Article and Find Full Text PDF

Carotid body chemoreceptor cells in response to hypoxic and hypercapnic stimulus increase their resting rate of release of neurotransmitters and their action potential frequency in the carotid sinus sensory nerve. When chemoreceptor activity is assessed at the level of the carotid sinus nerve and on ventilation, there exists an interaction between hypoxic and hypercapnic stimulus so that the response to both stimuli combined is additive or more than additive, over a wide range of stimulation. It is not clear if this interaction occurs at chemoreceptor cell or directly acting on the sensory nerve.

View Article and Find Full Text PDF

We report a spatial resolution of 5.4 nm in images of sarcoplasmic reticulum from rabbit muscle. The images were obtained in an aberration-corrected photoemission electron microscope with a hyperbolic mirror as the correcting element for spherical and chromatic aberration.

View Article and Find Full Text PDF

Chemoreceptor cells of the carotid bodies (CB) are activated by hypoxia and acidosis, responding with an increase in their rate of neurotransmitter release, which in turn increases the electrical activity in the carotid sinus nerve and evokes a homeostatic hyperventilation. Studies in isolated chemoreceptor cells have shown that moderate hypoxias ( 46 mmHg) produces smaller depolarisations and comparable Ca(2+) transients but a much higher catecholamine (CA) release response in intact CBs than intense acidic/hypercapnic stimuli (20% CO(2), pH 6.6).

View Article and Find Full Text PDF