Type 1 Diabetes Mellitus (T1DM) is a chronic autoimmune disease that results in the destruction of pancreatic β cells, leading to hyperglycaemia and the need for lifelong insulin therapy. Although genetic predisposition and environmental factors are considered key contributors to T1DM, the exact causes of the disease remain partially unclear. Recent evidence has focused on the relationship between the gut, the oral cavity, immune regulation, and systemic inflammation.
View Article and Find Full Text PDFRecent evidence has highlighted the role of the gut-brain axis in the progression of autism spectrum disorder (ASD), with significant changes in the gut microbiome of individuals with this condition. This report investigates the effects of probiotics and human milk oligosaccharide (HMO) supplements on the gut microbiome, inflammatory cytokine profile, and clinical outcomes in an ASD adolescent with chronic gastrointestinal dysfunction and cognitive impairment. Following treatment, we observed a decrease in proinflammatory cytokines' concentration alongside relative abundance, a bacterium reported to be linked with gastrointestinal diseases.
View Article and Find Full Text PDFIntroduction: Type 1 diabetes is an autoimmune disease with an significant genetic component, played mainly by the class II genes. Although evidence on the role of class I genes in developing type 1 diabetes and its onset have emerged, current screening is limited to determining DR3 and DR4 haplotypes. This study aimed to investigate the role of genes on type 1 diabetes risk and age of onset by extensive typing.
View Article and Find Full Text PDFThis publication details the discovery of a series of selective transient receptor potential cation channel subfamily M member 5 (TRPM5) agonists culminating with the identification of the lead compound (1R, 3R)-1-(3-chloro-5-fluorophenyl)-3-(hydroxymethyl)-1,2,3,4-tetrahydroisoquinoline-6-carbonitrile (39). We describe herein our biological rationale for agonism of the target, the examination of the then current literature tool molecules, and finally the process of our discovery starting with a high throughput screening hit through lead development. We also detail the selectivity of the lead compound 39 versus related family members TRPA1, TRPV1, TRPV4, TRPM4 and TRPM8, the drug metabolism and pharmacokinetics (DMPK) profile and in vivo efficacy in a mouse model of gastrointestinal motility.
View Article and Find Full Text PDFTransient Receptor Potential Melastatin 5 (TRPM5) is an intracellular calcium-activated cation-selective ion channel expressed in a variety of cell types. Dysfunction of this channel has recently been implied in a range of disease states including diabetes, enteric infections, inflammatory responses, parasitic infection and other pathologies. However, to date, agonists and positive modulators of this channel with sufficient selectivity to enable target validation studies have not been described, limiting the evaluation of TRPM5 biology and its potential as a drug target.
View Article and Find Full Text PDF