Publications by authors named "L Agez"

Uranium presents numerous industrial and military uses and one of the most important risks of contamination is dust inhalation. In contrast to the other modes of contamination, the inhaled uranium has been proposed to enter the brain not only by the common route of all modes of exposure, the blood pathway, but also by a specific inhalation exposure route, the olfactory pathway. To test whether the inhaled uranium enter the brain directly from the nasal cavity, male Sprague-Dawley rats were exposed to both inhaled and intraperitoneally injected uranium using the (236)U and (233)U, respectively, as tracers.

View Article and Find Full Text PDF

The suprachiasmatic nuclei (SCN) distribute the circadian neural message to the pineal gland which transforms it into a humoral circadian message, the nocturnal melatonin synthesis, which in turn modulates tissues expressing melatonin receptors such as the SCN or the pars tuberalis (PT). Nuclear orphan receptors (NOR), including rorbeta and rev-erbalpha, have been presented as functional links between the positive and negative loops of the molecular clock. Recent findings suggest that these NOR could be the initial targets of melatonin's chronobiotic message within the SCN.

View Article and Find Full Text PDF

The pineal hormone melatonin nocturnal synthesis feeds back on the suprachiasmatic nuclei (SCN), the central circadian clock. Indeed, daily melatonin injections in free-running rats resynchronize their locomotor activity to 24 h. However, the molecular mechanisms underlying this chronobiotic effect of the hormone are poorly understood.

View Article and Find Full Text PDF

In mammals, the complex interaction of neural, hormonal, and behavioral outputs from the suprachiasmatic nucleus (SCN) drives circadian expression of events, either directly or through coordination of the timing of peripheral oscillators. Melatonin, one of the endocrine output signals of the clock, provides the organism with circadian information and can be considered as an endogenous synchronizer, able to stabilize and reinforce circadian rhythms and to maintain their mutual phase-relationship at the different levels of the circadian network. Moreover, exogenous melatonin, through an action on the circadian clock, affects all levels of the circadian network.

View Article and Find Full Text PDF