Single-cell isolation is a truly transformative tool for the understanding of biological systems. It allows single-cell molecular analyses and considers the heterogeneity of cell populations, which is of particular relevance for the diagnosis and treatment of evolving diseases and for personalized medicine. Single-cell isolation is also a key process in cell line development, where it is used to obtain stable and high producing clonally-derived cell lines, thus contributing to the efficiency, safety and reproducible quality of the drug produced.
View Article and Find Full Text PDFUnlabelled: We present a 3D-printing technology allowing free-form fabrication of centimetre-scale injectable structures for minimally invasive delivery. They result from the combination of 3D printing onto a cryogenic substrate and optimisation of carboxymethylcellulose-based cryogel inks. The resulting highly porous and elastic cryogels are biocompatible, and allow for protection of cell viability during compression for injection.
View Article and Find Full Text PDFThe fabrication of microfluidic devices is often still a time-consuming and costly process. Here we introduce a very simple and cheap microfabrication process based on "razor writing", also termed xurography, for the ultra-rapid prototyping of microfluidic devices. Thin poly(dimethylsiloxane) (PDMS) membranes are spin-coated on flexible plastic foil and cut into user-defined shapes with a bench-top cutter plotter.
View Article and Find Full Text PDF