Publications by authors named "L Adamkova"

Mouse activating Nkrp1 proteins are commonly described as type II transmembrane receptors with disulfide-linked homodimeric structure. Their function and the manner in which Nkrp1 proteins of mouse strain (C57BL/6) oligomerize are still poorly understood. To assess the oligomerization state of Nkrp1 proteins, mouse activating EGFP-Nkrp1s were expressed in mammalian lymphoid cells and their oligomerization evaluated by Förster resonance energy transfer (FRET).

View Article and Find Full Text PDF

The cytotoxicity of mouse natural killer (NK) cells in response to pathological changes in target cells is regulated via the Nkrp1b receptor. Here, we characterized the Nkrp1b structure and structural features (stalk, loop, and oligomerization state) that affect its interactions. To study the Nkrp1b protein structure and the functional importance of its stalk, two Nkrp1b protein variants differing by the presence of the stalk were prepared.

View Article and Find Full Text PDF

The aim of the present study was to determine the structural requirements for dibenzocyclooctadiene lignans essential for P-glycoprotein inhibition. Altogether 15 structurally related lignans isolated from Schisandra chinensis or prepared by modification of their backbone were investigated, including three pairs of enantiomers. P-Glycoprotein inhibition was quantified using a doxorubicin accumulation assay in human promyelotic leukemia HL60/MDR cells overexpressing P-glycoprotein.

View Article and Find Full Text PDF

Signal transducer and activator of transcription 3 (STAT3) protein has been documented as a significant mediator of interferon (IFN) signaling. Physiological STAT3 phosphorylation involves tyrosine (Y705) and serine (S727) activation. Impairment of STAT3 protein levels and/or of STAT3 phosphorylation after IFN treatment has been found in many pathological conditions such as cancer, immunopathy and inflammatory disease.

View Article and Find Full Text PDF

The resistance to interferons (IFNs) limits their anticancer therapeutic efficacy. Here we studied the evolution of an IFN-resistant state in vitro using melanoma cell lines. We found that the cells became less sensitive to antiproliferative effect of IFN-gamma after prolonged cultivation enabling us to isolate sensitive and resistant subclones of the parental line.

View Article and Find Full Text PDF