Effective cross sections of nano-objects are fundamental properties that determine their ability to interact with light. However, measuring them for individual resonators directly and quantitatively remains challenging, particularly because of the very low signals involved. Here, we experimentally measure the thermal emission cross section of metal-insulator-metal nanoresonators using a stealthy hyperuniform distribution based on a hierarchical Poisson-disk algorithm.
View Article and Find Full Text PDFThe study of hybrid modes in a single dimer of neighboring antennas is an essential step to optimize the far-field electromagnetic (EM) response of large-scale metasurfaces or any complex antenna structure made up of subwavelength building blocks. Here we present far-field infrared spatial modulation spectroscopy (IR-SMS) measurements of a single thermally excited asymmetric dimer of square metal-insulator-metal (MIM) antennas separated by a nanometric gap. Through thermal fluctuations, all the EM modes of the antennas are excited, and hybrid bonding and anti-bonding modes can be observed simultaneously.
View Article and Find Full Text PDFWe investigate the electrical and thermal conductivities of the two-dimensional electron gas (2DEG) confined in the quantum well formed at the heterojunction between a thin GaN layer and an AlN layer strained by an Al Ga N capping layer in the temperature range from 10 to 360 K. The experimental protocol developed to deduce from calorimetric and Hall-effect measurements at a variable temperature the critical characteristics and transport properties of the confined 2DEG is presented. It is found that, in the measured temperature range (10-360 K), the electrical conductivity of the 2DEG is temperature-independent, due to the predominance of scattering processes by interface defects.
View Article and Find Full Text PDF