The orientation in lipid bilayers of the signal sequence of the bacterial protein LamB was studied using binding, circular dichroism, and fluorescence quenching experiments. Measurements were made of binding modifications caused by the incorporation of lipid probes (brominated or nitroxide-labeled phospholipids) used in the parallax fluorescence quenching method of determining peptide penetration depth [Abrams, F. S.
View Article and Find Full Text PDFInteractions between signal (leader) sequences and membranes are critical to protein insertion and translocation across membranes. In this paper, circular dichroism, tryptophan fluorescence, electrophoretic mobility, dipole potential, and binding measurements were used to study the interaction of the signal sequence of the Escherichia coli LamB protein with various lipid bilayers. By modifying specific chemicophysical properties of both the signal sequence and bilayer, we analyzed some of the key factors underlying peptide-lipid interactions.
View Article and Find Full Text PDFWe have shown that fusion of small unilamellar vesicles (SUV) with outer mitochondrial membranes occurs at physiological pH [Cortese et al., 1991, J. Cell Biol.
View Article and Find Full Text PDFGRP94, the endoplasmic reticulum Hsp90 paralog, binds a diverse array of peptides, a subset of which are suitable for assembly onto nascent MHC class I molecules. At present, the mechanism, site, and regulation of peptide binding to GRP94 are unknown. Using VSV8, the immunodominant peptide epitope of the vesicular stomatitis virus, and native, purified GRP94, we have investigated GRP94-peptide complex formation.
View Article and Find Full Text PDF