Background: Transfusion of blood products is a common practice in anesthesiology. Inadequate transfusion medicine knowledge may lead to inappropriate transfusion practices and patient risk. Using a validated assessment tool modified for anesthesiology, we conducted a survey of anesthesiology residents in the United States to assess transfusion medicine knowledge.
View Article and Find Full Text PDFIn the search for an understanding of how genetic variation contributes to the heritability of common human disease, the potential role of epigenetic factors, such as methylation, is being explored with increasing frequency. Although standard analyses test for associations between methylation levels at individual cytosine-phosphate-guanine (CpG) sites and phenotypes of interest, some investigators have begun testing for methylation and how methylation may modulate the effects of genetic polymorphisms on phenotypes. In our analysis, we used both a genome-wide and candidate gene approach to investigate potential single-nucleotide polymorphism (SNP)-CpG interactions on changes in triglyceride levels.
View Article and Find Full Text PDFThe siderophore produced by Rhodococcus rhodochrous strain OFS, rhodobactin, was isolated from iron-deficient cultures and purified by a combination of XAD-7 absorptive/partition resin column and semi-preparative HPLC. The siderophore structure was characterized using 1D and 2D (1)H, (13)C and (15)N NMR techniques (DQFCOSY, TOCSY, NOESY, HSQC and LR-HSQC) and was confirmed using ESI-MS and MS/MS experiments. The structural characterization revealed that the siderophore, rhodobactin, is a mixed ligand hexadentate siderophore with two catecholate and one hydroxamate moieties for iron chelation.
View Article and Find Full Text PDFAppl Environ Microbiol
April 2003
An approach to decontamination of biological endospores is discussed. Specifically, the performance of an aqueous modified Fenton reagent is examined. A modified Fenton reagent formulation of cupric chloride, ascorbic acid, and sodium chloride is shown to be an effective sporicide under aerobic conditions.
View Article and Find Full Text PDFRemarkable increases in enzyme catalytic stability resulting from addition of charged water-soluble polymers have recently been reported, suggesting that use of these polymers may be an attractive general strategy for enzyme stabilization. To test the proposed hypothesis that coulombic forces between water-soluble polymers and enzymes are primarily responsible for enzyme stabilization, we examined the catalytic stability and activity of two enzymes in the presence of polymers differing in net charge. All polymers tested increased enzyme lifetimes, regardless of their net charge, suggesting that stabilization of these enzymes by water-soluble polymers is not solely dependent on simple electrostatic interactions between the polymers and enzymes.
View Article and Find Full Text PDF