Publications by authors named "L A Terrazos"

We follow the evolution of the electronic properties of the titled homologous series when as well as the atomic type of A and M are varied where for = 1, A = Ca, Sr and M = Rh, Ir while for = 3, A = Ca, Sr and M = Rh. The crystal structure of = 1 members is known to be CaRhB-type (), while that of = 3 is CaRhB-type (); the latter can be visualized as a stacking of structural fragments from AMB (6/) and AMB. The metallic properties of the = 1 and 3 members are distinctly different: on the one hand, the = 1 members are characterized by a linear coefficient of the electronic specific heat ≈ 3 mJ mol K, a Debye temperature ≈ 300 K, a normal conductivity down to 2 K and a relatively strong linear magnetoresistivity for fields up to 150 kOe.

View Article and Find Full Text PDF

The quadrupolar hyperfine interactions of in-diffused (111)In --> (111)Cd probes in polycrystalline isostructural Zr(4)Al(3) and Hf(4)Al(3) samples containing small admixtures of the phases (Zr/Hf)(3)Al(2) were investigated. A strong preference of (111)In solutes for the contaminant (Zr/Hf)(3)Al(2) minority phases was observed. Detailed calculations of the electric field gradient (EFG) at the Cd nucleus using the full-potential augmented plane wave + local orbital formalism allowed us to assign the observed EFG fractions to the various lattice sites in the (Zr/Hf)(3)Al(2) compounds and to understand the preferential site occupation of the minority phases by the (111)In atoms.

View Article and Find Full Text PDF

By using the time-differential perturbed angular correlation technique, the electric field gradients (EFG) at (181)Hf/(181)Ta and (111)In/(111)Cd probe sites in the MoSi(2)-type compound Ti(2)Ag have been measured as a function of temperature in the range from 24 to 1073 K. Ab initio EFG calculations have been performed within the framework of density functional theory using the full-potential augmented plane wave+local orbitals method as implemented in the WIEN2k package. These calculations allowed assignments of the probe lattice sites.

View Article and Find Full Text PDF