The field of plant cell biology has a rich history of discovery, going back to Robert Hooke's discovery of cells themselves. The development of microscopes and preparation techniques has allowed for the visualization of subcellular structures, and the use of protein biochemistry, genetics, and molecular biology has enabled the identification of proteins and mechanisms that regulate key cellular processes. In this review, seven senior plant cell biologists reflect on the development of this research field in the past decades, including the foundational contributions that their teams have made to our rich, current insights into cell biology.
View Article and Find Full Text PDFMicroscopic studies of chloroplasts can be traced back to the year 1678 when Antonie van Leeuwenhoek reported to the Royal Society in London that he saw green globules in grass leaf cells with his single-lens microscope. Since then, microscopic studies have continued to contribute critical insights into the complex architecture of chloroplast membranes and how their structure relates to function. This review is organized into three chronological sections: During the classic light microscope period (1678-1940), the development of improved microscopes led to the identification of green grana, a colorless stroma, and a membrane envelope.
View Article and Find Full Text PDFBackground: The insect-trapping leaves of provide a model for studying the secretory pathway of an inducible plant secretory system. The leaf glands were induced with bovine serum albumin to secrete proteases that were characterized via zymogram activity gels over a 6-day period. The accompanying morphological changes of the endoplasmic reticulum (ER) and Golgi were analyzed using 3D electron tomography of glands preserved by high-pressure freezing/freeze substitution methods.
View Article and Find Full Text PDFBiogenesis of the complex 3D architecture of plant thylakoids remains an unsolved problem. Here, we analyzed this process in chloroplasts of germinating cotyledons using 3D electron microscopy and gene expression analyses of chloroplast proteins. Our study identified a linear developmental sequence with five assembly stages: tubulo-vesicular prothylakoids (24 h after imbibition [HAI]), sheet-like pregranal thylakoids that develop from the prothylakoids (36 HAI), proliferation of pro-grana stacks with wide tubular connections to the originating pregrana thylakoids (60 HAI), structural differentiation of pro-grana stacks and expanded stroma thylakoids (84 HAI), and conversion of the pro-grana stacks into mature grana stacks (120 HAI).
View Article and Find Full Text PDFPlant cytokinesis is orchestrated by a specialized structure, the phragmoplast. The phragmoplast first occurred in representatives of Charophyte algae and then became the main division apparatus in land plants. Major cellular activities, including cytoskeletal dynamics, vesicle trafficking, membrane assembly, and cell wall biosynthesis, cooperate in the phragmoplast under the guidance of a complex signaling network.
View Article and Find Full Text PDF