Pulmonary hypertension (PH) is a syndrome complex that accompanies a number of diseases of different etiologies, associated with basic mechanisms of structural and functional changes of the pulmonary circulation vessels and revealed pressure increasing in the pulmonary artery. The structural changes in the pulmonary circulation vessels are the main limiting factor determining the prognosis of patients with PH. Thickening and irreversible deposition of collagen in the pulmonary artery branches walls leads to rapid disease progression and a therapy effectiveness decreasing.
View Article and Find Full Text PDFHere we developed a model of chronic thromboembolic pulmonary hypertension (CTEPH) using repeated intravenous administration of microencapsulated thrombi with a controlled rate of biodegradation. Autologous thrombi encapsulated in alginate microspheres with a diameter of 190±48 μm were intravenously injected to rats 8 times every 4 days. In the comparison group, nonmodified thrombi were injected.
View Article and Find Full Text PDFChronic thromboembolic pulmonary hypertension (CTEPH) develops in 1.5-2.0% of patients experiencing pulmonary embolism (PE) and is characterized by stable pulmonary artery obstruction, heart failure, and poor prognosis.
View Article and Find Full Text PDFChronic thromboembolic pulmonary hypertension (CTEPH) is a rare complication of acute pulmonary embolism with poor clinical outcomes. Therapeutic approaches to prevention of fibrotic remodeling of the pulmonary vascular bed in CTEPH are limited. In this work, we tested the hypothesis that Janus kinase 1/2 (JAK1/2) inhibition with ruxolitinib might prevent and attenuate CTEPH in a rat model.
View Article and Find Full Text PDFChronic thromboembolic pulmonary hypertension (CTEPH) is a rare and life-threatening complication of pulmonary embolism. As existing animal models of CTEPH do not fully recapitulate complex disease pathophysiology, we report a new rat model for CTEPH evoked by repetitive embolization of the distal pulmonary artery branches with partially biodegradable alginate microspheres (MSs). MSs (180 ± 28 μm) were intravenously administered eight times at 4-day intervals; control animals received saline.
View Article and Find Full Text PDF