Publications by authors named "L A Rumiantseva"

Mass spectrometry has been an essential technique for the investigation of the metabolic pathways of living organisms since its appearance at the beginning of the 20th century. Due to its capability to resolve isotopically labeled species, it can be applied together with stable isotope tracers to reveal the transformation of particular biologically relevant molecules. However, low-resolution techniques, which were used for decades, had limited capabilities for untargeted metabolomics, especially when a large number of compounds are labelled simultaneously.

View Article and Find Full Text PDF

The administration of low doses of DO to living organisms was used for decades for the investigation of metabolic pathways and for the measurement of the turnover rate for specific compounds. Usually, the investigation of the deuterium uptake in lipids is performed by measuring the deuteration level of the palmitic acid residue using GC-MS instruments, and to our knowledge, the application of the modern untargeted LC-MS/MS lipidomics approaches was only reported a few times. Here, we investigated the deuterium uptake for >500 lipids for 13 organs and body liquids of mice (brain, lung, heart, liver, kidney, spleen, plasma, urine, etc.

View Article and Find Full Text PDF

Mono- and polysaccharides are an essential part of every biological system. Identifying underivatized carbohydrates using mass spectrometry is still a challenge because carbohydrates have a low capacity for ionization. Normally, the intensities of protonated carbohydrates are relatively low, and in order to increase the corresponding peak height, researchers add Na, K, or NHto the solution.

View Article and Find Full Text PDF

Dissociation induced by the accumulation of internal energy via collisions of ions with neutral molecules is one of the most important fragmentation techniques in mass spectrometry (MS), and the identification of small singly charged molecules is based mainly on the consideration of the fragmentation spectrum. Many research studies have been dedicated to the creation of databases of experimentally measured tandem mass spectrometry (MS/MS) spectra (such as MzCloud, Metlin, etc.) and developing software for predicting MS/MS fragments in silico from the molecular structure (such as MetFrag, CFM-ID, CSI:FingerID, etc.

View Article and Find Full Text PDF

The task of multipurpose analysis of biological samples and identification of individual compounds in them is actual for many organizations in various fields; the results of such analyses can affect lives. The most frequently used, most accurate, and highly sensitive method used for this kind of analysis is the combination of gas/liquid chromatography and high-resolution mass spectrometry. However, in some areas, it is necessary to increase the reliability of compound identification.

View Article and Find Full Text PDF