Publications by authors named "L A Retegui"

In a previous work we demonstrated that inhibition of mouse indoleamine 2,3-dioxygenase (IDO) by methyltryptophan (MT) exacerbated the pathological actions of mouse hepatitis virus (MHV-A59) infection, suggesting that tryptophan (TRP) catabolism was involved in viral effects. Since there is a second enzyme that dioxygenates TRP, tryptophan-2, 3-dioxygenase (TDO), which is mainly located in liver, we decided to study its role in our model of MHV-infection. Results showed that in vivo TDO inhibition by LM10, a derivative of 3-(2-(pyridyl) ethenyl) indole, resulted in a decrease of anti- MHV Ab titers induced by the virus infection.

View Article and Find Full Text PDF

Mice infected with mouse hepatitis virus A59 (MHV-A59) develop hepatitis and autoantibodies (autoAb) to liver and kidney fumarylacetoacetate hydrolase (FAH), a fact closely related to the release of alarmins such as uric acid and/or high-mobility group box protein 1 (HMGB1). We studied the effect of neutralizing monoclonal antibodies (MAb) against IL-17A in our model of mouse MHV-A59-infection. MAb anti-IL-17F and anti-IFNγ were used to complement the study.

View Article and Find Full Text PDF

Mice infected with mouse hepatitis virus A59 (MHV-A59) develop autoantibodies (autoAb) to liver and kidney fumarylacetoacetate hydrolase (FAH) with a concomitant enhancement of transaminases and release of alarmins such as uric acid and high-mobility group box protein 1 (HMGB1). Tryptophan catabolism is an endogenous mechanism that restricts excessive immune responses, thereby preventing immunopathology. Since indoleamine-2,3-dioxygenase (IDO) is the key and rate-limiting enzyme of tryptophan catabolism, the aim of this work was to explore whether specific inhibition of IDO by Levo-1-methyl tryptophan (MT) could affect MHV actions.

View Article and Find Full Text PDF

Lactate dehydrogenase-elevating virus (LDV) is an apparently innocuous and persistent virus that can modify mouse immune reactions. We have shown that LDV-infected mice immunized with human growth hormone (hGH) showed a deep modification of the specificity of the anti-hGH antibodies (Ab) in CBA/Ht mice but not BALB/c animals. The aim of this work was to extend the previous observations to another mouse strain, C57BL/6, as well as to an antigen unrelated to hGH, ovalbumin (OVA), and to explore at the same time the production of various cytokines at serum and cellular levels.

View Article and Find Full Text PDF

Previous works from our laboratory demonstrated that the monoclonal antibody (MAb) called R7B4 is directed to an epitope shared by various receptors corresponding to the type I cytokine receptor family, containing the common motif WSXWS or the homologous F(Y)GEFS. Later a consensus peptide significantly recognized by the MAb was identified and synthesized (sequence HGYWSEWSPE). In the present work, an homologous of the consensus sequence (HHGYWSEWSPE) was conjugated to PADRE adjuvant to produce Ab that could simulate theMAb activity, that is, acting as hormone and/or cytokine antagonists.

View Article and Find Full Text PDF