The main objective of this tutorial is to provide the readers with a roadmap of how to establish increasingly complex target-mediated drug disposition (TMDD) models for monoclonal antibodies. To this end, we built mathematical models, each with a detailed visualization, starting from the basic TMDD model by Mager and Jusko to the well-established, physiologically based model by Li et al. in a step-wise fashion to highlight the relative importance of key physiological processes that impact mAb kinetics and system dynamics.
View Article and Find Full Text PDFEnzymatic (metabolic rate) processes are traditionally modelled by means of Michaelis-Menten type reactions. The experimental setup is usually performed in vitro also denoted as a 'closed system'. In this paper we explore the impact of enzyme turnover on the classical Michaelis-Menten model by modifying it to include enzyme turnover, specifically through zeroth-order synthesis and first-order degeneration of the enzyme.
View Article and Find Full Text PDFSince the beginning of this century, target-mediated drug disposition has become a central concept in modeling drug action in drug development. It combines a range of processes, such as turnover, protein binding, internalization, and non-specific elimination, and often serves as a nucleus of more complex pharmacokinetic models. It is simple enough to comprehend but complex enough to be able to describe a wide range of phenomena and data sets.
View Article and Find Full Text PDFIn the well-known model for basic Target-Mediated Drug Disposition (TMDD), drug binds to the target and the resulting drug-target complex is removed by a first order process, leading to loss of both drug and target. In the present note we study what happens when, instead, drug is returned to the free drug pool so that it can a new target molecule. What results is a mechanism in which the drug, here referred to as the ligand, facilitates the removal of the target,and then returns to the free ligand pool.
View Article and Find Full Text PDF