Background: Prolonged cold storage (CS) of kidneys results in poor long-term outcomes after transplantation (Tx). We reported previously that CS of rat kidneys for 18 h before transplant impaired proteasome function, disrupted protein homeostasis, and reduced graft function. The goal of the present study was to identify the renal proteins, including phosphoproteins, that are dysregulated by this CS injury.
View Article and Find Full Text PDFKidney transplantation is the preferred treatment for end-stage kidney disease (ESKD). However, there is a shortage of transplantable kidneys, and donor organs can be damaged by necessary cold storage (CS). Although CS improves the viability of kidneys from deceased donors, prolonged CS negatively affects transplantation outcomes.
View Article and Find Full Text PDFDisruption of mitochondrial structure/function is well-recognized to be a determinant of cell death in cardiomyocytes subjected to lethal episodes of ischemia-reperfusion (IR). However, the precise mitochondrial event(s) that precipitate lethal IR injury remain incompletely resolved. Using the in vitro HL-1 cardiomyocyte model, our aims were to establish whether: (1) proteolytic processing of optic atrophy protein-1 (OPA1), the inner mitochondrial membrane protein responsible for maintaining cristae junction integrity, plays a causal, mechanistic role in determining cardiomyocyte fate in cells subjected to lethal IR injury; and (2) preservation of OPA1 may contribute to the well-documented cardioprotection achieved with ischemic preconditioning (IPC) and remote ischemic conditioning.
View Article and Find Full Text PDFCannabinoids exert anti-cancer actions; however, the underlying cytotoxic mechanisms and the cannabinoid receptors (CBRs) involved remain unclear. In this study, CBRs were characterized in several cancer cell lines. Radioligand binding screens surprisingly revealed specific binding only for the non-selective cannabinoid [H]WIN-55,212-2, and not [H]CP-55,940, indicating that the expressed CBRs exhibit atypical binding properties.
View Article and Find Full Text PDFKidneys from deceased donors undergo cold storage (CS) preservation before transplantation. Although CS is a clinical necessity for extending organ quality preservation, CS causes mitochondrial and renal injury. Specifically, many studies, including our own, have shown that the triggering event of CS-induced renal injury is mitochondrial reactive oxygen species (mROS).
View Article and Find Full Text PDF