Publications by authors named "L A MULIERI"

Introduction And Objectives: The variation between rest and peak stress end-systolic pressure-volume relation is an afterload-independent index of left ventricular contractility. Whether and to what extent it depends on end-diastolic volume remains unclear. The aim of this study was to assess the dependence of the delta rest-stress end-systolic pressure-volume relation on end-diastolic volume in patients with negative stress echo and all ranges of resting left ventricular function.

View Article and Find Full Text PDF

Sphericalization of the left ventricular (LV) chamber shape in patients with mitral regurgitation (MR) contributes to increased LV wall stress and energy consumption. On the basis of previous observations, we hypothesized the existence of regional differences in the force-frequency relation (FFR) within the LV that may contribute to its shape. Accordingly, in the present study, we assessed regional variation in the FFR in patients undergoing surgery for chronic, nonischemic MR with class II-III heart failure symptoms and related our findings to the in vivo LV shape.

View Article and Find Full Text PDF

Mitral regurgitation (MR) causes ventricular dilation, a blunted myocardial force-frequency relation, and increased crossbridge force-time integral (FTI). The mechanism of FTI increase was investigated using sinusoidal length perturbation analysis to compare crossbridge function in skinned left ventricular (LV) epicardial muscle strips from 5 MR and 5 nonfailing (NF) control hearts. Myocardial dynamic stiffness was modeled as 3 parallel viscoelastic processes.

View Article and Find Full Text PDF

In failing human hearts (FHH) (NYHA IV) the cardiac output is inadequate to meet the metabolic needs of the peripheral systems. By means of thermo-mechanical analysis we have shown that epicardial strips from FHH (37 degrees C) have a depressed tension independent heat (TIH) and tension independent heat rate (dTIH / dt) liberation that correlates with depression in peak isometric force and the rate of relaxation. Furthermore, in response to a change in frequency of stimulation, FHH shows a severe blunting of the force-frequency relationship resulting in a decrease in myocardial reserve and in the frequency at which optimum force is obtained.

View Article and Find Full Text PDF