Inorganic polyphosphates and respective metabolic pathways and enzymes are important factors for yeast active growth in unfavorable conditions. However, particular proteins of polyphosphate metabolism remain poorly explored in this context. Here we report biochemical and transcriptomic characterization of the CRN/PPN2 yeast strain (derived from Ppn1-lacking CRN strain) overexpressing poorly studied Ppn2 polyphosphatase.
View Article and Find Full Text PDFThe CYSTM (cysteine-rich transmembrane module) protein family comprises small molecular cysteine-rich tail-anchored membrane proteins found in many eukaryotes. The strains carrying the CYSTM genes and () fused with were used to test the expression of these genes under different stresses. The () and genes are expressed under stress conditions caused by the toxic concentrations of heavy metal ions, such as manganese, cobalt, nickel, zinc, cuprum, and 2.
View Article and Find Full Text PDFInorganic polyphosphates (polyP) are the linear polymers of orthophosphoric acid varying in the number of phosphate residues linked by the energy-rich phosphoanhydride bonds. PolyP is an essential component in living cells. Knowledge of polyP metabolizing enzymes in eukaryotes is necessary for understanding molecular mechanisms of polyP metabolism in humans and development of new approaches for treating bone and cardiovascular diseases associated with impaired mineral phosphorus metabolism.
View Article and Find Full Text PDFThe effect of the yeast endopolyphosphatase Ppn2 overproduction on the metabolism of inorganic polyphosphates in Saccharomyces cerevisiae yeast was studied. Expression of the PPN2 gene under control of the strong constitutive promoter of glyceraldehyde 3-phosphate dehydrogenase gene (PKG1) led to a significant increase in the endopolyphosphatase activity stimulated by cobalt/zinc ions. This activity was present in both soluble and membrane subcellular fractions; it was higher toward long-chain polyphosphates and could be stimulated by ADP.
View Article and Find Full Text PDFSaccharomyces cerevisiae has high level of inorganic polyphosphate and a multicomponent system of its metabolism, including polyphosphatases Ppx1, Ppn1, Ddp1, and Ppn2. The aim of the study was to construct the yeast strain overexpressing Ppn2 and to compare the properties of Ppn2, Ppx1, Ppn1, and Ddp1 purified from overexpressing strains of S. cerevisiae.
View Article and Find Full Text PDF