Israel is below the global average of cancer mortality thanks to early diagnosis plans and advanced treatment, yet every year about 30,000 patients are diagnosed with cancer and 11,000 die from it. Many patients are diagnosed at an advanced stage of malignancy in which curative surgery cannot be offered. Early detection and intervention have been proven to be of greatest importance in reducing cancer morbidity and mortality.
View Article and Find Full Text PDFThe concept of chelation therapy as a valuable therapeutic approach in neurological disorders led us to develop multi-target, non-toxic, lipophilic, brain-permeable compounds with iron chelation and anti-apoptotic properties for neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), age-related dementia and amyotrophic lateral sclerosis (ALS). Herein, we reviewed our two most effective such compounds, M30 and HLA20, based on a multimodal drug design paradigm. The compounds have been tested for their mechanisms of action using animal and cellular models such as APP/PS1 AD transgenic (Tg) mice, G93A-SOD1 mutant ALS Tg mice, C57BL/6 mice, Neuroblastoma × Spinal Cord-34 (NSC-34) hybrid cells, a battery of behavior tests, and various immunohistochemical and biochemical techniques.
View Article and Find Full Text PDFStochastic transition of cancer cells between drug-sensitive and drug-tolerant persister phenotypes has been proposed to play a key role in non-genetic resistance to therapy. Yet, we show here that cancer cells actually possess a highly stable inherited chance to persist (CTP) during therapy. This CTP is non-stochastic, determined pre-treatment and has a unimodal distribution ranging from 0 to almost 100%.
View Article and Find Full Text PDFIn many of the neurodegenerative diseases, such as Alzheimer's disease (AD) and AD-related disorders, as well as in the regular ageing process, excessive generation of oxidative stress (OS) and accumulation of iron levels and deposition have been observed in specific affected-brain regions and thus, regarded as contributing factors to the pathogenesis of the diseases. In AD, iron promotes amyloid β (Aβ) neurotoxicity by producing free radical damage and OS in brain areas affected by neurodegeneration, presumably by facilitating the aggregation of Aβ. In addition, it was shown that iron modulates intracellular levels of the holo amyloid precursor protein (APP) by iron-responsive elements (IRE) RNA stem loops in the 5' untranslated region (5'UTR) of the APP transcript.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is the most common degenerative disease of the motoneuron system, involving various abnormalities, such as mitochondrial dysfunction, oxidative stress, transitional metal accumulation, neuroinflammation, glutamate excitotoxicity, apoptosis, decreased supply of trophic factors, cytoskeletal abnormalities, and extracellular superoxide dismutase (SOD)-1 toxicity. These multiple disease etiologies implicated in ALS gave rise to the perception that future therapeutic approaches for the disease should be aimed at targeting multiple pathological pathways. In line with this view, we have evaluated in the current study the therapeutic effects of low doses of the novel multifunctional monoamine oxidase (MAO) inhibitor/iron-chelating compound, M30 in combination with high Calorie Energy supplemented Diet (CED) in the SOD1-G93A transgenic mouse model of ALS.
View Article and Find Full Text PDF