Publications by authors named "L A Kulikova"

Article Synopsis
  • - The study aims to advance the diagnosis and treatment of schizophrenia by identifying blood biomarkers, moving away from solely subjective assessments of clinical symptoms.
  • - Researchers conducted a detailed proteomic analysis of plasma samples from 48 schizophrenia patients and 50 healthy individuals, using advanced techniques to evaluate protein presence.
  • - Findings revealed unique proteins in schizophrenia patients that are linked to key biological processes, enhancing the understanding of the disorder's molecular mechanisms and potential therapeutic targets.
View Article and Find Full Text PDF

The review summarizes all synthetic methodologies for the preparation of chromeno[3,2-]pyridines and chromeno[3,2-]quinolines. The proposed approaches are systemized based on ways for the construction of the heterocyclic system. The presence of these compounds in nature and their bioactivity are also discussed.

View Article and Find Full Text PDF

Hybrid integration of solid-state quantum emitters (QEs) into nanophotonic structures opens enticing perspectives for exploiting multiple degrees of freedom of single-photon sources for on-chip quantum photonic applications. However, the state-of-the-art single-photon sources are mostly limited to two-level states or scalar vortex beams. Direct generation of high-dimensional structured single photons remains challenging, being still in its infancy.

View Article and Find Full Text PDF

Solid-state quantum emitters (QEs) with arbitrary direction emission and well-defined polarization are critical for scalable single-photon sources and quantum information processing. However, the design strategy for on-chip generation of off-normal photon emission with high-purity polarization characteristics has so far remained elusive. Here, we introduce the anisotropic holography metasurfaces for efficiently manipulating the emission direction and polarization of QE.

View Article and Find Full Text PDF

The primary objective of analyzing the data obtained in a mass spectrometry-based proteomic experiment is peptide and protein identification, or correct assignment of the tandem mass spectrum to one amino acid sequence. Comparison of empirical fragment spectra with the theoretical predicted one or matching with the collected spectra library are commonly accepted strategies of proteins identification and defining of their amino acid sequences. Although these approaches are widely used and are appreciably efficient for the well-characterized model organisms or measured proteins, they cannot detect novel peptide sequences that have not been previously annotated or are rare.

View Article and Find Full Text PDF