Publications by authors named "L A Il'inskaia"

A retrospective look was made on the estimation of the diagnostic value of preclinical and clinical methods for verification of pulmonary tuberculosis. Among 170 examinees, 65.5% were self-directed, 24.

View Article and Find Full Text PDF

The time course of accumulation and the composition of proteinase-inhibiting proteins in diffusates from potato tubers treated with elicitors such as salicylic, jasmonic, and arachidonic acids were studied. The 40-kDa reserve protein patatin and the chymotrypsin inhibitors, among which proteins of 24.6, 22.

View Article and Find Full Text PDF

The properties and effects of two plant resistance suppressors (1,3-beta-1,6-beta-glucan and a pentasaccharide of xyloglucan origin) involved in the pathosystem of potato (Solanum tuberosum) and the causal agent of blight (Phytophthora infestans (Mont) de Bary) were compared. The microbial 1,3-beta-1,6-beta-glucan suppressed the defense response over a narrow concentration range (10(-2) M), whereas the plant pentasaccharide had a broad range of effective concentrations (10(-12) to 10(-6) M). In the pathosystem of potato-causal agent of late blight, the beta-glucan caused a local and race-specific suppressor effect on the plant host defense response.

View Article and Find Full Text PDF

Potato (Solanum tuberosum L.) tubers were treated with various concentrations (10(-9) to 10(-4) M) of the biogenic elicitor arachidonic acid during the period of storage (from October to July). The data showed that the resistance-inducing concentration of arachidonic acid was 10(-6) M in autumn and 10(-9) M in spring.

View Article and Find Full Text PDF

Low-molecular-weight water-soluble chitosan with a molecular weight of 5 kDa obtained after enzymatic hydrolysis of native crab chitosan was shown to display an elicitor activity by inducing the local and systemic resistance of Solanumi tuberosum potato and Lycopesicon esculentum tomato to Phytophthora infestans and nematodes, respectively. Chitosan induced the accumulation of phytoalexins in tissues of host plants, decreased the total content and changed the composition of free sterols producing adverse effects on infesters, activated chitinases, beta-glucanases, and lipoxygenases, and stimulated the generation of reactive oxygen species. The activation of protective mechanisms in plant tissues inhibited the growth of taxonomically different pathogens (parasitic fungus Phytophthora infestans and root knot nematode Meloidogyne incognita).

View Article and Find Full Text PDF