Publications by authors named "L A Giannuzzi"

A conduction heat transfer analysis of ex situ lift-out specimen handling under cryogenic conditions (cryo-EXLO) is performed and compared with experimentally determined temperature values using a type K thermocouple. Using a finite-volume solver for heat conduction, the analysis confirms that manipulation of a specimen by a probe above a working surface cooled at liquid nitrogen (LN2) temperatures can remain below the critical vitreous temperature up to several hundreds of micrometers above the working surface, allowing for ample distance for lift out and specimen manipulation. In addition, the temperature above the cryogenic shuttle sample holder working surface remains below the vitreous temperature for several tens of minutes without adding cryogen, yielding sufficient time to complete multiple manipulations.

View Article and Find Full Text PDF

This study aimed to assess the impact of adaptation of ten strains of O157:H7 and non-O157 Escherichia coli to low pH (acid shock or slow acidification) and the effects of this exposure or not on the resistance of E. coli strains to UV radiation in orange juice (pH 3.5).

View Article and Find Full Text PDF

In this study, a conjugate radiation/conduction multimode heat transfer analysis of cryogenic focused ion beam (FIB) milling steps necessary for producing ex situ lift out specimens under cryogenic conditions (cryo-EXLO) is performed. Using finite volume for transient heat conduction and enclosure theory for radiation heat transfer, the analysis shows that as long as the specimen is attached or touching the FIB side wall trenches, the specimen will remain vitreous indefinitely, while actively cooled at liquid nitrogen (LN2) temperatures. To simulate the time needed to perform a transfer step to move the bulk sample containing the FIB-thinned specimen from the cryo-FIB to the cryo-EXLO cryostat, the LN2 temperature active cooling is turned off after steady-state conditions are reached and the specimen is monitored over time until the critical devitrification temperature is reached.

View Article and Find Full Text PDF

Recently, the development of materials with antimicrobial properties has become a challenge under scrutiny. The incorporation of copper nanoparticles (NpCu) into a chitosan matrix appears to represent a viable strategy to contain the particles and prevent their oxidation. Regarding the physical properties, the nanocomposite films (CHCu) showed a decrease in the elongation at break (5 %) and an increase in the tensile strength of 10 % concerning chitosan films (control).

View Article and Find Full Text PDF

The increase in cyanobacterial blooms linked to climate change and the eutrophication of water bodies is a global concern. The harmful cyanobacterium is one of the most common bloom-forming species whose removal from fresh water and, in particular, from that used for water treatment processes, remains a crucial goal. Different biodegradable and environmentally friendly coagulants/flocculants have been assayed, with chitosan showing a very good performance.

View Article and Find Full Text PDF