For centuries scientists and technologists have sought artificial leg replacements that fully capture the versatility of their intact biological counterparts. However, biological gait requires coordinated volitional and reflexive motor control by complex afferent and efferent neural interplay, making its neuroprosthetic emulation challenging after limb amputation. Here we hypothesize that continuous neural control of a bionic limb can restore biomimetic gait after below-knee amputation when residual muscle afferents are augmented.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2022
Food fortification is an effective strategy to address vitamin A (VitA) deficiency, which is the leading cause of childhood blindness and drastically increases mortality from severe infections. However, VitA food fortification remains challenging due to significant degradation during storage and cooking. We utilized an FDA-approved, thermostable, and pH-responsive basic methacrylate copolymer (BMC) to encapsulate and stabilize VitA in microparticles (MPs).
View Article and Find Full Text PDFBackground: Elucidating underlying mechanisms in subject-specific motor control and perception after amputation could guide development of advanced surgical and neuroprosthetic technologies. In this study, relationships between preserved agonist-antagonist muscle strain within the residual limb and preserved motor control and perception capacity are investigated.
Methods: Fourteen persons with unilateral transtibial amputations spanning a range of ages, etiologies, and surgical procedures underwent evaluations involving free-space mirrored motions of their lower limbs.