Publications by authors named "L A Corp"

Mangroves buffer inland ecosystems from hurricane winds and storm surge. However, their ability to withstand harsh cyclone conditions depends on plant resilience traits and geomorphology. Using airborne lidar and satellite imagery collected before and after Hurricane Irma, we estimated that 62% of mangroves in southwest Florida suffered canopy damage, with largest impacts in tall forests (>10 m).

View Article and Find Full Text PDF

Solar induced fluorescence (SIF) is an ecological variable of interest to remote sensing retrievals, as it is directly related to vegetation composition and condition. FIREFLY (fluorescence imaging of red and far-red light yield) is a high performance spectrometer for estimating SIF. FIREFLY was flown in conjunction with NASA Goddard's lidar, hyperspectral, and thermal (G-LiHT) instrument package in 2017, as a technology demonstration for airborne retrievals of SIF.

View Article and Find Full Text PDF
Article Synopsis
  • Leaf fluorescence is a key method for monitoring plant health and photosynthetic activity, providing insights into plant development and stress levels through red and far-red chlorophyll fluorescence maps.
  • Research on loblolly pine plantations in North Carolina revealed that younger stands have significantly higher red fluorescence yield compared to mature ones, suggesting a link to photosynthetic limitations in aging trees.
  • To improve the analysis of fluorescence data affected by pixel mixing in satellite images, the Canopy Cover Fluorescence Index (CCFI) was proposed, demonstrating the potential to better understand forest dynamics and responses to climate change.
View Article and Find Full Text PDF

Current strategies for monitoring the physiologic status of terrestrial vegetation rely on remote sensing reflectance data, which provide estimates of vigor based primarily on chlorophyll content. Chlorophyll fluorescence (ChlF) measurements offer a non-destructive alternative and a more direct approach for diagnosis of vegetation stress before a significant reduction in chlorophyll content has occurred. Thus, technology based on ChlF may allow more accurate carbon sequestration estimates and earlier stress detection than is possible when using reflectance data alone.

View Article and Find Full Text PDF

Current methods for large-scale vegetation monitoring rely on multispectral remote sensing, which has serious limitation for the detection of vegetation stress. To contribute to the establishment of a generalized spectral approach for vegetation stress detection, this study compares the ability of high-spectral-resolution reflectance (R) and fluorescence (F) foliar measurements to detect vegetation changes associated with common environmental factors affecting plant growth and productivity. To obtain a spectral dataset from a broad range of species and stress conditions, plant material from three experiments was examined, including (i) corn, nitrogen (N) deficiency/excess; (ii) soybean, elevated carbon dioxide, and ozone levels; and (iii) red maple, augmented ultraviolet irradiation.

View Article and Find Full Text PDF