Publications by authors named "L A Chaney"

Graphite is a commonly used raw material across many industries and the demand for high-quality graphite has been increasing in recent years, especially as a primary component for lithium-ion batteries. However, graphite production is currently limited by production shortages, uneven geographical distribution, and significant environmental impacts incurred from conventional processing. Here, an efficient method of synthesizing biomass-derived graphite from biochar is presented as a sustainable alternative to natural and synthetic graphite.

View Article and Find Full Text PDF
Article Synopsis
  • Current methods for producing graphene nanoplatelets are not scalable or sustainable, hindering their industrial use in electronics and composites.
  • Researchers developed a new method using carboxylated cellulose nanocrystals (CNCs) from grass as a green dispersant for creating graphene, achieving a conversion yield of 13.4%.
  • This new technique not only improves efficiency and conductivity in printed electronics but also significantly reduces fossil fuel use and greenhouse gas emissions compared to traditional methods.
View Article and Find Full Text PDF
Article Synopsis
  • Printed electronics is a game-changing technology used in various applications such as sensors, displays, and wearable devices, utilizing 2D materials for their excellent properties.
  • Traditional methods for producing 2D electronic inks, like centrifugation, are time-consuming and inefficient, while newer methods face challenges due to low concentration requirements.
  • The presented study introduces a continuous flow system using advanced ceramic membranes that enhance processing efficiency, significantly reduce environmental impact, and lower production costs for high-quality printable inks.
View Article and Find Full Text PDF

Additive manufacturing holds promise for rapid prototyping and low-cost production of biosensors for diverse pathogens. Among additive manufacturing methods, screen printing is particularly desirable for high-throughput production of sensing platforms. However, this technique needs to be combined with carefully formulated inks, rapid postprocessing, and selective functionalization to meet all requirements for high-performance biosensing applications.

View Article and Find Full Text PDF