Publications by authors named "L A Bulavin"

The wetting characteristics of fluids play a crucial role in various fields of interface and surface science. Contact angle serves as a fundamental indicator of wetting behavior. However, accurate quantification of wetting phenomena even at the macroscale often poses challenges, particularly due to the hysteresis between receding and advancing contact angles.

View Article and Find Full Text PDF

In the present manuscript, we highlight the contradictions in the thermally activated processes theory which treats a system's activated state as a state of the phonon subsystem. We offer an alternative model, in which the activated state is treated as an electron subsystem state. The mechanism of the activated state formation is as follows: thermal fluctuations excite electrons of some particles within the activation zone.

View Article and Find Full Text PDF

This review aims to provide a literature overview as well as the authors' personal account to the studies of Laponite® (Lap)/Polyethylene-oxide (PEO) based composite materials and their applications. These composites can be prepared over a wide range of their mutual concentrations, they are highly water soluble, and have many useful physico-chemical properties. To the readers' convenience, the contents are subdivided into different sections, related with consideration of PEO properties and its solubility in water, behavior of Lap systems(structure of Lap-platelets, properties of aqueous dispersions of Lap and aging effects in them), analyzing ofproperties LAP/PEO systems, Lap platelets-PEO interactions, adsorption mechanisms, aging effects, aggregation and electrokinetic properties.

View Article and Find Full Text PDF

A thermodynamic model is proposed to describe the melting of lamellar crystallite in a solid medium. This model includes a modification of the Gibbs-Thomson equation to make it applicable to the above-mentioned crystallites. The need for such modification is supported experimentally by studying the impact of the surroundings on the melting point of the crystallites.

View Article and Find Full Text PDF

Aqueous solutions of polyethylene glycol are studied by small-angle neutron scattering over a broad range of polymer molecular masses and concentrations. The scattering data were modeled by a Gaussian chain form factor combined with random phase approximation, which provided good fits over the whole studied concentration range. The results showed that polyethylene glycol in the molecular mass range 0.

View Article and Find Full Text PDF